Papers
Topics
Authors
Recent
2000 character limit reached

Feature Purified Transformer With Cross-level Feature Guiding Decoder For Multi-class OOD and Anomaly Deteciton (2406.15396v1)

Published 30 Apr 2024 in cs.CV, cs.AI, and cs.LG

Abstract: Reconstruction networks are prevalently used in unsupervised anomaly and Out-of-Distribution (OOD) detection due to their independence from labeled anomaly data. However, in multi-class datasets, the effectiveness of anomaly detection is often compromised by the models' generalized reconstruction capabilities, which allow anomalies to blend within the expanded boundaries of normality resulting from the added categories, thereby reducing detection accuracy. We introduce the FUTUREG framework, which incorporates two innovative modules: the Feature Purification Module (FPM) and the CFG Decoder. The FPM constrains the normality boundary within the latent space to effectively filter out anomalous features, while the CFG Decoder uses layer-wise encoder representations to guide the reconstruction of filtered features, preserving fine-grained details. Together, these modules enhance the reconstruction error for anomalies, ensuring high-quality reconstructions for normal samples. Our results demonstrate that FUTUREG achieves state-of-the-art performance in multi-class OOD settings and remains competitive in industrial anomaly detection scenarios.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.