Papers
Topics
Authors
Recent
2000 character limit reached

Adaptive Compression of Massive MIMO Channel State Information with Deep Learning (2406.14668v2)

Published 20 Jun 2024 in cs.NI

Abstract: This paper proposes the use of deep autoencoders to compress the channel information in a \review{massive} multiple input and multiple output (MIMO) system. Although autoencoders perform lossy compression, they still have adequate usefulness when applied to massive MIMO system channel state information (CSI) compression. To demonstrate their impact on the CSI, we measure the performance of the system under two different channel models for different compression ratios. We disclose a few practical considerations in using autoencoders for this propose. We show through simulation that the run-time complexity of this deep autoencoder is irrelative to the compression ratio and thus an adaptive compression rate is feasible with an optimal compression ratio depending on the channel model and the signal to noise ratio.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.