Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Bioptic B1: A Target-Agnostic Potency-Based Small Molecules Search Engine (2406.14572v4)

Published 13 Jun 2024 in q-bio.QM, cs.AI, and cs.IR

Abstract: Recent successes in virtual screening have been made possible by large models and extensive chemical libraries. However, combining these elements is challenging: the larger the model, the more expensive it is to run, making ultra-large libraries unfeasible. To address this, we developed a target-agnostic, efficacy-based molecule search model, which allows us to find structurally dissimilar molecules with similar biological activities. We used the best practices to design fast retrieval system, based on processor-optimized SIMD instructions, enabling us to screen the ultra-large 40B Enamine REAL library with 100\% recall rate. We extensively benchmarked our model and several state-of-the-art models for both speed performance and retrieval quality of novel molecules.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: