Extended Resolution Clause Learning via Dual Implication Points (2406.14190v2)
Abstract: We present a new extended resolution clause learning (ERCL) algorithm, implemented as part of a conflict-driven clause-learning (CDCL) SAT solver, wherein new variables are dynamically introduced as definitions for {\it Dual Implication Points} (DIPs) in the implication graph constructed by the solver at runtime. DIPs are generalizations of unique implication points and can be informally viewed as a pair of dominator nodes, from the decision variable at the highest decision level to the conflict node, in an implication graph. We perform extensive experimental evaluation to establish the efficacy of our ERCL method, implemented as part of the MapleLCM SAT solver and dubbed xMapleLCM, against several leading solvers including the baseline MapleLCM, as well as CDCL solvers such as Kissat 3.1.1, CryptoMiniSat 5.11, and SBVA+CaDiCaL, the winner of SAT Competition 2023. We show that xMapleLCM outperforms these solvers on Tseitin and XORified formulas. We further compare xMapleLCM with GlucoseER, a system that implements extended resolution in a different way, and provide a detailed comparative analysis of their performance.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.