Papers
Topics
Authors
Recent
2000 character limit reached

Measuring Sample Importance in Data Pruning for Language Models based on Information Entropy (2406.14124v3)

Published 20 Jun 2024 in cs.AI and cs.LG

Abstract: Compute-efficient training of LLMs has become an important issue. We consider data pruning for data-efficient training of LLMs. In this work, we consider a data pruning method based on information entropy. We propose that the samples in the training corpus be ranked in terms of their informativeness which we estimate through entropy functions. The key idea is that, less informative samples are likely to contain redundant information, and thus should be pruned first. We use the entropy functions based on the negative log-likelihood and the average inverse word frequency of a sample as a surrogate to measure its informativeness. Experiments reveal that the proposed information-based pruning can improve upon various language modeling and downstream tasks, and enhance the generalization capability of LLMs.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.