Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gradient-Boosted Generalized Linear Models for Conditional Vine Copulas (2406.13500v1)

Published 19 Jun 2024 in stat.ME and stat.AP

Abstract: Vine copulas are flexible dependence models using bivariate copulas as building blocks. If the parameters of the bivariate copulas in the vine copula depend on covariates, one obtains a conditional vine copula. We propose an extension for the estimation of continuous conditional vine copulas, where the parameters of continuous conditional bivariate copulas are estimated sequentially and separately via gradient-boosting. For this purpose, we link covariates via generalized linear models (GLMs) to Kendall's $\tau$ correlation coefficient from which the corresponding copula parameter can be obtained. Consequently, the gradient-boosting algorithm estimates the copula parameters providing a natural covariate selection. In a second step, an additional covariate deselection procedure is applied. The performance of the gradient-boosted conditional vine copulas is illustrated in a simulation study. Linear covariate effects in low- and high-dimensional settings are investigated for the conditional bivariate copulas separately and for conditional vine copulas. Moreover, the gradient-boosted conditional vine copulas are applied to the temporal postprocessing of ensemble weather forecasts in a low-dimensional setting. The results show, that our suggested method is able to outperform the benchmark methods and identifies temporal correlations better. Eventually, we provide an R-package called boostCopula for this method.

Summary

We haven't generated a summary for this paper yet.