Papers
Topics
Authors
Recent
Search
2000 character limit reached

Estimating Non-Simplified Vine Copulas Using Penalized Splines

Published 4 Mar 2016 in stat.ME | (1603.01424v2)

Abstract: Vine copulas (or pair-copula constructions) have become an important tool for high-dimensional dependence modeling. Typically, so called simplified vine copula models are estimated where bivariate conditional copulas are approximated by bivariate unconditional copulas. We present the first non-parametric estimator of a non-simplified vine copula that allows for varying conditional copulas using penalized hierarchical B-splines. Throughout the vine copula, we test for the simplifying assumption in each edge, establishing a data-driven non-simplified vine copula estimator. To overcome the curse of dimensionality, we approximate conditional copulas with more than one conditioning argument by a conditional copula with the first principal component as conditioning argument. An extensive simulation study is conducted, showing a substantial improvement in the out-of-sample Kullback-Leibler divergence if the null hypothesis of a simplified vine copula can be rejected. We apply our method to the famous uranium data and present a classification of an eye state data set, demonstrating the potential benefit that can be achieved when conditional copulas are modeled.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.