Papers
Topics
Authors
Recent
2000 character limit reached

Cheeger type inequalities associated with isocapacitary constants on graphs (2406.12583v2)

Published 18 Jun 2024 in math.DG

Abstract: In this paper, we introduce Cheeger type constants via isocapacitary constants introduced by Maz'ya to estimate first Dirichlet, Neumann and Steklov eigenvalues on a finite subgraph of a graph. Moreover, we estimate the bottom of the spectrum of the Laplace operator and the Dirichlet-to-Neumann operator for an infinite subgraph. Estimates for higher-order Steklov eigenvalues on a finite or infinite subgraph are also proved.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.