Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

A Gradient Accumulation Method for Dense Retriever under Memory Constraint (2406.12356v3)

Published 18 Jun 2024 in cs.IR

Abstract: InfoNCE loss is commonly used to train dense retriever in information retrieval tasks. It is well known that a large batch is essential to stable and effective training with InfoNCE loss, which requires significant hardware resources. Due to the dependency of large batch, dense retriever has bottleneck of application and research. Recently, memory reduction methods have been broadly adopted to resolve the hardware bottleneck by decomposing forward and backward or using a memory bank. However, current methods still suffer from slow and unstable training. To address these issues, we propose Contrastive Accumulation (ContAccum), a stable and efficient memory reduction method for dense retriever trains that uses a dual memory bank structure to leverage previously generated query and passage representations. Experiments on widely used five information retrieval datasets indicate that ContAccum can surpass not only existing memory reduction methods but also high-resource scenario. Moreover, theoretical analysis and experimental results confirm that ContAccum provides more stable dual-encoder training than current memory bank utilization methods.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com