Papers
Topics
Authors
Recent
2000 character limit reached

Data Petri Nets meet Probabilistic Programming (Extended version) (2406.11883v1)

Published 12 Jun 2024 in cs.PL and cs.AI

Abstract: Probabilistic programming (PP) is a programming paradigm that allows for writing statistical models like ordinary programs, performing simulations by running those programs, and analyzing and refining their statistical behavior using powerful inference engines. This paper takes a step towards leveraging PP for reasoning about data-aware processes. To this end, we present a systematic translation of Data Petri Nets (DPNs) into a model written in a PP language whose features are supported by most PP systems. We show that our translation is sound and provides statistical guarantees for simulating DPNs. Furthermore, we discuss how PP can be used for process mining tasks and report on a prototype implementation of our translation. We also discuss further analysis scenarios that could be easily approached based on the proposed translation and available PP tools.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.