Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Finite-difference-informed graph network for solving steady-state incompressible flows on block-structured grids (2406.10534v3)

Published 15 Jun 2024 in cs.LG, cs.AI, and physics.flu-dyn

Abstract: Advances in deep learning have enabled physics-informed neural networks to solve partial differential equations. Numerical differentiation using the finite-difference (FD) method is efficient in physics-constrained designs, even in parameterized settings. In traditional computational fluid dynamics(CFD), body-fitted block-structured grids are often employed for complex flow cases when obtaining FD solutions. However, convolution operators in convolutional neural networks for FD are typically limited to single-block grids. To address this issue, \blueText{graphs and graph networks are used} to learn flow representations across multi-block-structured grids. \blueText{A graph convolution-based FD method (GC-FDM) is proposed} to train graph networks in a label-free physics-constrained manner, enabling differentiable FD operations on unstructured graph outputs. To demonstrate model performance from single- to multi-block-structured grids, \blueText{the parameterized steady incompressible Navier-Stokes equations are solved} for a lid-driven cavity flow and the flows around single and double circular cylinder configurations. When compared to a CFD solver under various boundary conditions, the proposed method achieves a relative error in velocity field predictions on the order of $10{-3}$. Furthermore, the proposed method reduces training costs by approximately 20\% compared to a physics-informed neural network. \blueText{To} further verify the effectiveness of GC-FDM in multi-block processing, \blueText{a 30P30N airfoil geometry is considered} and the \blueText{predicted} results are reasonable compared with those given by CFD. \blueText{Finally, the applicability of GC-FDM to three-dimensional (3D) case is tested using a 3D cavity geometry.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube