Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

DCILP: A Distributed Approach for Large-Scale Causal Structure Learning (2406.10481v2)

Published 15 Jun 2024 in cs.LG, math.OC, and stat.ME

Abstract: Causal learning tackles the computationally demanding task of estimating causal graphs. This paper introduces a new divide-and-conquer approach for causal graph learning, called DCILP. In the divide phase, the Markov blanket MB($X_i$) of each variable $X_i$ is identified, and causal learning subproblems associated with each MB($X_i$) are independently addressed in parallel. This approach benefits from a more favorable ratio between the number of data samples and the number of variables considered. In counterpart, it can be adversely affected by the presence of hidden confounders, as variables external to MB($X_i$) might influence those within it. The reconciliation of the local causal graphs generated during the divide phase is a challenging combinatorial optimization problem, especially in large-scale applications. The main novelty of DCILP is an original formulation of this reconciliation as an integer linear programming (ILP) problem, which can be delegated and efficiently handled by an ILP solver. Through experiments on medium to large scale graphs, and comparisons with state-of-the-art methods, DCILP demonstrates significant improvements in terms of computational complexity, while preserving the learning accuracy on real-world problem and suffering at most a slight loss of accuracy on synthetic problems.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 0 likes.