Papers
Topics
Authors
Recent
2000 character limit reached

MiNT: Multi-Network Training for Transfer Learning on Temporal Graphs (2406.10426v3)

Published 14 Jun 2024 in cs.LG

Abstract: Temporal Graph Learning (TGL) has become a robust framework for discovering patterns in dynamic networks and predicting future interactions. While existing research has largely concentrated on learning from individual networks, this study explores the potential of learning from multiple temporal networks and its ability to transfer to unobserved networks. To achieve this, we introduce Temporal Multi-network Training MiNT, a novel pre-training approach that learns from multiple temporal networks. With a novel collection of 84 temporal transaction networks, we pre-train TGL models on up to 64 networks and assess their transferability to 20 unseen networks. Remarkably, MiNT achieves state-of-the-art results in zero-shot inference, surpassing models individually trained on each network. Our findings further demonstrate that increasing the number of pre-training networks significantly improves transfer performance. This work lays the groundwork for developing Temporal Graph Foundation Models, highlighting the significant potential of multi-network pre-training in TGL.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.