Papers
Topics
Authors
Recent
2000 character limit reached

Investigate the Performance of Distribution Loading with Conditional Quantum Generative Adversarial Network Algorithm on Quantum Hardware with Error Suppression (2406.09341v1)

Published 13 Jun 2024 in quant-ph

Abstract: The study examines the efficacy of the Fire Opal error suppression and AI circuit optimization system integrated with IBM's quantum computing platform for a multi-modal distribution loading algorithm. Using Kullback-Leibler (KL) divergence as a quantitative error analysis, the results indicate that Fire Opal can improve on the time-dependent distributions generated by our Conditional Quantum Generative Adversarial algorithm by 30-40\% in comparison with the results on the simulator. In addition, Fire Opal's performance remains consistent for complex circuits despite the needs to run more trials. The research concludes that Fire Opal's error suppression and circuit optimization significantly enhanced quantum computing processes, highlighting its potential for practical applications. In addition, the study also reviews leading error mitigation strategies, including zero noise extrapolation (ZNE), probabilistic error cancellation (PEC), Pauli twirling, measurement error mitigation, and machine learning methods, assessing their advantages and disadvantages in terms of technical implementation, quantum resources, and scalability.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.