Papers
Topics
Authors
Recent
2000 character limit reached

General Bayesian Predictive Synthesis (2406.09254v1)

Published 13 Jun 2024 in stat.ME

Abstract: This study investigates Bayesian ensemble learning for improving the quality of decision-making. We consider a decision-maker who selects an action from a set of candidates based on a policy trained using observations. In our setting, we assume the existence of experts who provide predictive distributions based on their own policies. Our goal is to integrate these predictive distributions within the Bayesian framework. Our proposed method, which we refer to as General Bayesian Predictive Synthesis (GBPS), is characterized by a loss minimization framework and does not rely on parameter estimation, unlike existing studies. Inspired by Bayesian predictive synthesis and general Bayes frameworks, we evaluate the performance of our proposed method through simulation studies.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.