Papers
Topics
Authors
Recent
2000 character limit reached

GANetic Loss for Generative Adversarial Networks with a Focus on Medical Applications (2406.05023v1)

Published 7 Jun 2024 in cs.CV

Abstract: Generative adversarial networks (GANs) are machine learning models that are used to estimate the underlying statistical structure of a given dataset and as a result can be used for a variety of tasks such as image generation or anomaly detection. Despite their initial simplicity, designing an effective loss function for training GANs remains challenging, and various loss functions have been proposed aiming to improve the performance and stability of the generative models. In this study, loss function design for GANs is presented as an optimization problem solved using the genetic programming (GP) approach. Initial experiments were carried out using small Deep Convolutional GAN (DCGAN) model and the MNIST dataset, in order to search experimentally for an improved loss function. The functions found were evaluated on CIFAR10, with the best function, named GANetic loss, showing exceptionally better performance and stability compared to the losses commonly used for GAN training. To further evalute its general applicability on more challenging problems, GANetic loss was applied for two medical applications: image generation and anomaly detection. Experiments were performed with histopathological, gastrointestinal or glaucoma images to evaluate the GANetic loss in medical image generation, resulting in improved image quality compared to the baseline models. The GANetic Loss used for polyp and glaucoma images showed a strong improvement in the detection of anomalies. In summary, the GANetic loss function was evaluated on multiple datasets and applications where it consistently outperforms alternative loss functions. Moreover, GANetic loss leads to stable training and reproducible results, a known weak spot of GANs.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.