Papers
Topics
Authors
Recent
2000 character limit reached

Quantifying Geospatial in the Common Crawl Corpus

Published 7 Jun 2024 in cs.CL and cs.AI | (2406.04952v2)

Abstract: LLMs exhibit emerging geospatial capabilities, stemming from their pre-training on vast unlabelled text datasets that are often derived from the Common Crawl (CC) corpus. However, the geospatial content within CC remains largely unexplored, impacting our understanding of LLMs' spatial reasoning. This paper investigates the prevalence of geospatial data in recent Common Crawl releases using Gemini 1.5, a powerful LLM. By analyzing a sample of documents and manually revising the results, we estimate that 18.7% of web documents in CC contain geospatial information such as coordinates and addresses. We find little difference in prevalence between Enlgish- and non-English-language documents. Our findings provide quantitative insights into the nature and extent of geospatial data in CC, and lay the groundwork for future studies of geospatial biases of LLMs.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.