Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence of the majorized PAM method with subspace correction for low-rank composite factorization model (2406.04588v2)

Published 7 Jun 2024 in math.OC and stat.ML

Abstract: This paper focuses on the convergence certificates of the majorized proximal alternating minimization (PAM) method with subspace correction, proposed in \cite{TaoQianPan22} for the column $\ell_{2,0}$-norm regularized factorization model and now extended to a class of low-rank composite factorization models from matrix completion. The convergence analysis of this PAM method becomes extremely challenging because a subspace correction step is introduced to every proximal subproblem to ensure a closed-form solution. We establish the full convergence of the iterate sequence and column subspace sequences of factor pairs generated by the PAM, under the KL property of the objective function and a condition that holds automatically for the column $\ell_{2,0}$-norm function. Numerical comparison with the popular proximal alternating linearized minimization (PALM) method is conducted on one-bit matrix completion problems, which indicates that the PAM with subspace correction has an advantage in seeking lower relative error within less time.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com