Column $\ell_{2,0}$-norm regularized factorization model of low-rank matrix recovery and its computation
Abstract: This paper is concerned with the column $\ell_{2,0}$-regularized factorization model of low-rank matrix recovery problems and its computation. The column $\ell_{2,0}$-norm of factor matrices is introduced to promote column sparsity of factors and low-rank solutions. For this nonconvex discontinuous optimization problem, we develop an alternating majorization-minimization (AMM) method with extrapolation, and a hybrid AMM in which a majorized alternating proximal method is proposed to seek an initial factor pair with less nonzero columns and the AMM with extrapolation is then employed to minimize of a smooth nonconvex loss. We provide the global convergence analysis for the proposed AMM methods and apply them to the matrix completion problem with non-uniform sampling schemes. Numerical experiments are conducted with synthetic and real data examples, and comparison results with the nuclear-norm regularized factorization model and the max-norm regularized convex model show that the column $\ell_{2,0}$-regularized factorization model has an advantage in offering solutions of lower error and rank within less time.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.