Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Low-Rank Matrix Learning with Nonconvex Regularization (1512.00984v1)

Published 3 Dec 2015 in cs.NA, cs.LG, and stat.ML

Abstract: Low-rank modeling has a lot of important applications in machine learning, computer vision and social network analysis. While the matrix rank is often approximated by the convex nuclear norm, the use of nonconvex low-rank regularizers has demonstrated better recovery performance. However, the resultant optimization problem is much more challenging. A very recent state-of-the-art is based on the proximal gradient algorithm. However, it requires an expensive full SVD in each proximal step. In this paper, we show that for many commonly-used nonconvex low-rank regularizers, a cutoff can be derived to automatically threshold the singular values obtained from the proximal operator. This allows the use of power method to approximate the SVD efficiently. Besides, the proximal operator can be reduced to that of a much smaller matrix projected onto this leading subspace. Convergence, with a rate of O(1/T) where T is the number of iterations, can be guaranteed. Extensive experiments are performed on matrix completion and robust principal component analysis. The proposed method achieves significant speedup over the state-of-the-art. Moreover, the matrix solution obtained is more accurate and has a lower rank than that of the traditional nuclear norm regularizer.

Citations (45)

Summary

We haven't generated a summary for this paper yet.