Papers
Topics
Authors
Recent
2000 character limit reached

All crepant resolutions of hyperpolygon spaces via their Cox rings

Published 6 Jun 2024 in math.AG | (2406.04117v2)

Abstract: We construct and enumerate all crepant resolutions of hyperpolygon spaces, a family of conical symplectic singularities arising as Nakajima quiver varieties associated to a star-shaped quiver. We provide an explicit presentation of the Cox ring of any such crepant resolution. Using techniques developed by Arzhantsev-Derenthal-Hausen-Laface we construct all crepant resolutions of the hyperpolygon spaces, including those which are not projective over the singularity. We find that the number of crepant resolutions equals the Ho\c{s}ten-Morris numbers. In proving these results, we obtain a description of all complete geometric quotients associated to the classical GIT problem constructing moduli spaces of ordered points on the projective line. These moduli spaces appear as the Lagrangian subvarieties of crepant resolutions of hyperpolygon spaces fixed under the conical action.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.