Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Multidimensional Quantum Generative Modeling by Quantum Hartley Transform (2406.03856v1)

Published 6 Jun 2024 in quant-ph and cond-mat.stat-mech

Abstract: We develop an approach for building quantum models based on the exponentially growing orthonormal basis of Hartley kernel functions. First, we design a differentiable Hartley feature map parametrized by real-valued argument that enables quantum models suitable for solving stochastic differential equations and regression problems. Unlike the naturally complex Fourier encoding, the proposed Hartley feature map circuit leads to quantum states with real-valued amplitudes, introducing an inductive bias and natural regularization. Next, we propose a quantum Hartley transform circuit as a map between computational and Hartley basis. We apply the developed paradigm to generative modeling from solutions of stochastic differential equations, and utilize the quantum Hartley transform for fine sampling from parameterized distributions through an extended register. Finally, we present tools for implementing multivariate quantum generative modeling for both correlated and uncorrelated distributions. As a result, the developed quantum Hartley models offer a distinct quantum approach to generative AI at increasing scale.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.