Quantum Chebyshev Transform: Mapping, Embedding, Learning and Sampling Distributions (2306.17026v1)
Abstract: We develop a paradigm for building quantum models in the orthonormal space of Chebyshev polynomials. We show how to encode data into quantum states with amplitudes being Chebyshev polynomials with degree growing exponentially in the system size. Similar to the quantum Fourier transform which maps computational basis space into the phase (Fourier) basis, we describe the quantum circuit for the mapping between computational and Chebyshev spaces. We propose an embedding circuit for generating the orthonormal Chebyshev basis of exponential capacity, represented by a continuously-parameterized shallow isometry. This enables automatic quantum model differentiation, and opens a route to solving stochastic differential equations. We apply the developed paradigm to generative modeling from physically- and financially-motivated distributions, and use the quantum Chebyshev transform for efficient sampling of these distributions in extended computational basis.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.