Equivariant Graph Neural Networks for Prediction of Tensor Material Properties of Crystals (2406.03563v2)
Abstract: Modern E(3)-Equivariant networks may be used to predict rotationally equivariant properties, including tensorial quantities. Three such quantities: the dielectric, piezoelectric, and elasticity tensors, are computationally expensive to produce ab initio for crystalline systems; however, with greater availability of such data in large material property databases, we now have a sufficient target space to begin training equivariant models in the prediction of such properties. Here we explicitly develop spherical harmonic decompositions of these tensorial properties using their general symmetries. We then apply three distinct E(3)-equivariant convolutional structures to the prediction of the components of these decompositions, allowing us to predict the aforementioned tensorial quantities in an equivariant manner and compare performance. We further report results testing the transferability of these predictive models between different tensorial target sets.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.