A mathematical analysis of IPT-DMFT (2406.03384v1)
Abstract: We provide a mathematical analysis of the Dynamical Mean-Field Theory, a celebrated representative of a class of approximations in quantum mechanics known as embedding methods. We start by a pedagogical and self-contained mathematical formulation of the Dynamical Mean-Field Theory equations for the finite Hubbard model. After recalling the definition and properties of one-body time-ordered Green's functions and self-energies, and the mathematical structure of the Hubbard and Anderson impurity models, we describe a specific impurity solver, namely the Iterated Perturbation Theory solver, which can be conveniently formulated using Matsubara's Green's functions. Within this framework, we prove under certain assumptions that the Dynamical Mean-Field Theory equations admit a solution for any set of physical parameters. Moreover, we establish some properties of the solution(s).
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.