Evaluation of data inconsistency for multi-modal sentiment analysis (2406.03004v1)
Abstract: Emotion semantic inconsistency is an ubiquitous challenge in multi-modal sentiment analysis (MSA). MSA involves analyzing sentiment expressed across various modalities like text, audio, and videos. Each modality may convey distinct aspects of sentiment, due to subtle and nuanced expression of human beings, leading to inconsistency, which may hinder the prediction of artificial agents. In this work, we introduce a modality conflicting test set and assess the performance of both traditional multi-modal sentiment analysis models and multi-modal LLMs (MLLMs). Our findings reveal significant performance degradation across traditional models when confronted with semantically conflicting data and point out the drawbacks of MLLMs when handling multi-modal emotion analysis. Our research presents a new challenge and offer valuable insights for the future development of sentiment analysis systems.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.