2000 character limit reached
Approximate path decompositions of regular graphs (2406.02514v1)
Published 4 Jun 2024 in math.CO
Abstract: We show that the edges of any $d$-regular graph can be almost decomposed into paths of length roughly $d$, giving an approximate solution to a problem of Kotzig from 1957. Along the way, we show that almost all of the vertices of a $d$-regular graph can be partitioned into $n/(d+1)$ paths, asymptotically confirming a conjecture of Magnant and Martin from 2009.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.