Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Compositional dynamic modelling for causal prediction in multivariate time series (2406.02320v1)

Published 4 Jun 2024 in stat.ME and stat.AP

Abstract: Theoretical developments in sequential Bayesian analysis of multivariate dynamic models underlie new methodology for causal prediction. This extends the utility of existing models with computationally efficient methodology, enabling routine exploration of Bayesian counterfactual analyses with multiple selected time series as synthetic controls. Methodological contributions also define the concept of outcome adaptive modelling to monitor and inferentially respond to changes in experimental time series following interventions designed to explore causal effects. The benefits of sequential analyses with time-varying parameter models for causal investigations are inherited in this broader setting. A case study in commercial causal analysis-- involving retail revenue outcomes related to marketing interventions-- highlights the methodological advances.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: