Papers
Topics
Authors
Recent
2000 character limit reached

Dual-Stream Attention Network for Hyperspectral Image Unmixing (2406.01644v1)

Published 3 Jun 2024 in eess.IV

Abstract: Hyperspectral image (HSI) contains abundant spatial and spectral information, making it highly valuable for unmixing. In this paper, we propose a Dual-Stream Attention Network (DSANet) for HSI unmixing. The endmembers and abundance of a pixel in HSI have high correlations with its adjacent pixels. Therefore, we adopt a "many to one" strategy to estimate the abundance of the central pixel. In addition, we adopt multiview spectral method, dividing spectral bands into multiple partitions with low correlations to estimate abundances. To aggregate the estimated abundances for complementary from the two branches, we design a cross-fusion attention network to enhance valuable information. Extensive experiments have been conducted on two real datasets, which demonstrate the effectiveness of our DSANet.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.