Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing Noise Robustness of Retrieval-Augmented Language Models with Adaptive Adversarial Training (2405.20978v1)

Published 31 May 2024 in cs.AI

Abstract: LLMs exhibit substantial capabilities yet encounter challenges, including hallucination, outdated knowledge, and untraceable reasoning processes. Retrieval-augmented generation (RAG) has emerged as a promising solution, integrating knowledge from external databases to mitigate these challenges. However, inappropriate retrieved passages can potentially hinder the LLMs' capacity to generate comprehensive and high-quality responses. Prior RAG studies on the robustness of retrieval noises often confine themselves to a limited set of noise types, deviating from real-world retrieval environments and limiting practical applicability. In this study, we initially investigate retrieval noises and categorize them into three distinct types, reflecting real-world environments. We analyze the impact of these various retrieval noises on the robustness of LLMs. Subsequently, we propose a novel RAG approach known as Retrieval-augmented Adaptive Adversarial Training (RAAT). RAAT leverages adaptive adversarial training to dynamically adjust the model's training process in response to retrieval noises. Concurrently, it employs multi-task learning to ensure the model's capacity to internally recognize noisy contexts. Extensive experiments demonstrate that the LLaMA-2 7B model trained using RAAT exhibits significant improvements in F1 and EM scores under diverse noise conditions. For reproducibility, we release our code and data at: https://github.com/calubkk/RAAT.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Feiteng Fang (12 papers)
  2. Yuelin Bai (13 papers)
  3. Shiwen Ni (34 papers)
  4. Min Yang (239 papers)
  5. Xiaojun Chen (100 papers)
  6. Ruifeng Xu (66 papers)
Citations (10)
Github Logo Streamline Icon: https://streamlinehq.com

GitHub