Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

On $r$-primitive $k$-normal polynomials with two prescribed coefficients (2405.20760v1)

Published 31 May 2024 in math.NT

Abstract: This article investigates the existence of an $r$-primitive $k$-normal polynomial, defined as the minimal polynomial of an $r$-primitive $k$-normal element in $\mathbb{F}{qn}$, with a specified degree $n$ and two given coefficients over the finite field $\mathbb{F}{q}$. Here, $q$ represents an odd prime power, and $n$ is an integer. The article establishes a sufficient condition to ensure the existence of such a polynomial. Using this condition, it is demonstrated that a $2$-primitive $2$-normal polynomial of degree $n$ always exists over $\mathbb{F}_{q}$ when both $q\geq 11$ and $n\geq 15$. However, for the range $10\leq n\leq 14$, uncertainty remains regarding the existence of such a polynomial for $71$ specific pairs of $(q,n)$. Moreover, when $q<11$, the number of uncertain pairs reduces to $16$. Furthermore, for the case of $n=9$, extensive computational power is employed using SageMath software, and it is found that the count of such uncertain pairs is reduced to $3988$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.