Detecting the Stochastic Gravitational Wave Background from Primordial Black Holes in Slow-reheating Scenarios (2405.19271v1)
Abstract: After primordial inflation, the universe may have experienced a prolonged reheating epoch, potentially leading to a phase of matter domination supported by the oscillating inflaton field. During such an epoch, perturbations in the inflaton virialize upon reentering the cosmological horizon, forming inflaton structures. If the primordial overdensities are sufficiently large, these structures collapse to form primordial black holes (PBHs). To occur at a significant rate, this process requires an enhanced primordial power spectrum (PPS) at small scales. The enhancement of the PPS, as well as the formation and tidal interaction of the primordial structures, will in turn source a stochastic gravitational wave background(SGWB) that could be detected by current and/or future gravitational wave detectors. In this paper, we study the SGWB arising from these different sources during slow-reheating, focusing on a PPS that satisfies the requirements necessary for the formation of PBHs with a mass of $M_{\rm PBH}\simeq 10{21}$ and that constitute the entirety of dark matter in the universe.
- Y. B. Zel’dovich and I. D. Novikov, “The hypothesis of cores retarded during expansion and the hot cosmological model,” Soviet Astronomy, vol. 10, p. 602, 1967.
- S. W. Hawking, “Black hole explosions,” Nature, vol. 248, pp. 30–31, 1974.
- A. M. Green and B. J. Kavanagh, “Primordial Black Holes as a dark matter candidate,” J. Phys. G, vol. 48, no. 4, p. 043001, 2021.
- R. Bean and J. a. Magueijo, “Could supermassive black holes be quintessential primordial black holes?,” Phys. Rev. D, vol. 66, p. 063505, Sep 2002.
- M. Sasaki, T. Suyama, T. Tanaka, and S. Yokoyama, “Primordial black hole scenario for the gravitational-wave event gw150914,” Phys. Rev. Lett., vol. 117, no. 6, p. 061101, 2016.
- B. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama, “New cosmological constraints on primordial black holes,” Physical Review D, vol. 81, no. 10, p. 104019, 2010.
- B. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama, “Constraints on primordial black holes,” arXiv preprint arXiv:2002.12778, 2020.
- Y. Akrami et al., “Planck 2018 results. X. Constraints on inflation,” Astron. Astrophys., vol. 641, p. A10, 2020.
- H. Motohashi and W. Hu, “Primordial Black Holes and Slow-Roll Violation,” Phys. Rev. D, vol. 96, no. 6, p. 063503, 2017.
- A. Linde, S. Mooij, and E. Pajer, “Gauge field production in supergravity inflation: Local non-gaussianity and primordial black holes,” Phys. Rev. D, vol. 87, p. 103506, May 2013.
- E. Bugaev and P. Klimai, “Axion inflation with gauge field production and primordial black holes,” Phys. Rev. D, vol. 90, no. 10, p. 103501, 2014.
- E. Erfani, “Primordial Black Holes Formation from Particle Production during Inflation,” JCAP, vol. 04, p. 020, 2016.
- J. Garcia-Bellido, M. Peloso, and C. Unal, “Gravitational waves at interferometer scales and primordial black holes in axion inflation,” JCAP, vol. 12, p. 031, 2016.
- F. Bezrukov, M. Pauly, and J. Rubio, “On the robustness of the primordial power spectrum in renormalized Higgs inflation,” JCAP, vol. 02, p. 040.
- J. Garcia-Bellido and E. Ruiz Morales, “Primordial black holes from single field models of inflation,” Phys. Dark Univ., vol. 18, pp. 47–54, 2017.
- S. S. Mishra and V. Sahni, “Primordial Black Holes from a tiny bump/dip in the Inflaton potential,” JCAP, vol. 04, p. 007, 2020.
- J. Fumagalli, S. Renaux-Petel, J. W. Ronayne, and L. T. Witkowski, “Turning in the landscape: A new mechanism for generating primordial black holes,” Physics Letters B, vol. 841, p. 137921, 2023.
- S. R. Geller, W. Qin, E. McDonough, and D. I. Kaiser, “Primordial black holes from multifield inflation with nonminimal couplings,” Phys. Rev. D, vol. 106, p. 063535, Sep 2022.
- G. A. Palma, S. Sypsas, and C. Zenteno, “Seeding primordial black holes in multifield inflation,” Phys. Rev. Lett., vol. 125, no. 12, p. 121301, 2020.
- L. Iacconi, H. Assadullahi, M. Fasiello, and D. Wands, “Revisiting small-scale fluctuations in α𝛼\alphaitalic_α-attractor models of inflation,” JCAP, vol. 06, no. 06, p. 007, 2022.
- L. Iacconi and D. J. Mulryne, “Multi-field inflation with large scalar fluctuations: non-Gaussianity and perturbativity,” JCAP, vol. 09, p. 033, 2023.
- R. Kallosh and A. Linde, “Dilaton-axion inflation with PBHs and GWs,” JCAP, vol. 08, no. 08, p. 037, 2022.
- M. Braglia, A. Linde, R. Kallosh, and F. Finelli, “Hybrid α𝛼\alphaitalic_α-attractors, primordial black holes and gravitational wave backgrounds,” JCAP, vol. 04, p. 033, 2023.
- J. Fumagalli, S. Renaux-Petel, J. W. Ronayne, and L. T. Witkowski, “Turning in the landscape: a new mechanism for generating primordial black holes,” Physics Letters B, vol. 841, p. 137921, 2023.
- M. Braglia, D. K. Hazra, F. Finelli, G. F. Smoot, L. Sriramkumar, and A. A. Starobinsky, “Generating pbhs and small-scale gws in two-field models of inflation,” Journal of Cosmology and Astroparticle Physics, vol. 2020, no. 08, p. 001, 2020.
- K. A. Malik and D. Wands, “Cosmological perturbations,” Phys. Rept., vol. 475, pp. 1–51, 2009.
- K. N. Ananda, C. Clarkson, and D. Wands, “The Cosmological gravitational wave background from primordial density perturbations,” Phys. Rev. D, vol. 75, p. 123518, 2007.
- D. Baumann, P. J. Steinhardt, K. Takahashi, and K. Ichiki, “Gravitational Wave Spectrum Induced by Primordial Scalar Perturbations,” Phys. Rev. D, vol. 76, p. 084019, 2007.
- G. Domènech, “Scalar Induced Gravitational Waves Review,” Universe, vol. 7, no. 11, p. 398, 2021.
- K. Inomata, K. Kohri, and T. Terada, “Detected stochastic gravitational waves and subsolar-mass primordial black holes,” Phys. Rev. D, vol. 109, no. 6, p. 063506, 2024.
- S. Clesse, J. García-Bellido, and S. Orani, “Detecting the Stochastic Gravitational Wave Background from Primordial Black Hole Formation,” 12 2018.
- T. Nakama, J. Silk, and M. Kamionkowski, “Stochastic gravitational waves associated with the formation of primordial black holes,” Phys. Rev. D, vol. 95, p. 043511, Feb 2017.
- T. Nakama, “Stochastic gravitational waves associated with primordial black holes formed during an early matter era,” Phys. Rev. D, vol. 101, no. 6, p. 063519, 2020.
- V. Vaskonen and H. Veermäe, “Did nanograv see a signal from primordial black hole formation?,” Phys. Rev. Lett., vol. 126, p. 051303, Feb 2021.
- V. De Luca, G. Franciolini, and A. Riotto, “Nanograv data hints at primordial black holes as dark matter,” Phys. Rev. Lett., vol. 126, p. 041303, Jan 2021.
- R. Allahverdi et al., “The First Three Seconds: a Review of Possible Expansion Histories of the Early Universe,” 6 2020.
- B. J. Carr, J. H. Gilbert, and J. E. Lidsey, “Black hole relics and inflation: Limits on blue perturbation spectra,” Physical Review D, vol. 50, no. 8, p. 4853, 1994.
- L. Alabidi, K. Kohri, M. Sasaki, and Y. Sendouda, “Observable induced gravitational waves from an early matter phase,” Journal of Cosmology and Astroparticle Physics, vol. 2013, p. 033, may 2013.
- T. Suyama, T. Tanaka, B. Bassett, and H. Kudoh, “Are black holes overproduced during preheating?,” Phys. Rev. D, vol. 71, p. 063507, Mar 2005.
- J. C. Hidalgo, J. De Santiago, G. German, N. Barbosa-Cendejas, and W. Ruiz-Luna, “Collapse threshold for a cosmological klein-gordon field,” Phys. Rev. D, vol. 96, p. 063504, Sep 2017.
- K. Carrion, J. C. Hidalgo, A. Montiel, and L. E. Padilla, “Complex Scalar Field Reheating and Primordial Black Hole production,” JCAP, vol. 07, p. 001, 2021.
- K. Inomata, K. Kohri, T. Nakama, and T. Terada, “Enhancement of Gravitational Waves Induced by Scalar Perturbations due to a Sudden Transition from an Early Matter Era to the Radiation Era,” Phys. Rev. D, vol. 100, no. 4, p. 043532, 2019.
- K. Inomata, K. Kohri, T. Nakama, and T. Terada, “Gravitational Waves Induced by Scalar Perturbations during a Gradual Transition from an Early Matter Era to the Radiation Era,” JCAP, vol. 10, p. 071, 2019.
- K. Jedamzik, M. Lemoine, and J. Martin, “Generation of gravitational waves during early structure formation between cosmic inflation and reheating,” Journal of Cosmology and Astroparticle Physics, vol. 2010, p. 021, apr 2010.
- B. Eggemeier, J. C. Niemeyer, K. Jedamzik, and R. Easther, “Stochastic gravitational waves from postinflationary structure formation,” Phys. Rev. D, vol. 107, no. 4, p. 043503, 2023.
- N. Bartolo, V. De Luca, G. Franciolini, M. Peloso, D. Racco, and A. Riotto, “Testing primordial black holes as dark matter with LISA,” Phys. Rev. D, vol. 99, no. 10, p. 103521, 2019.
- N. Bartolo, V. De Luca, G. Franciolini, A. Lewis, M. Peloso, and A. Riotto, “Primordial Black Hole Dark Matter: LISA Serendipity,” Phys. Rev. Lett., vol. 122, no. 21, p. 211301, 2019.
- L. E. Padilla, J. C. Hidalgo, and K. A. Malik, “New mechanism for primordial black hole formation during reheating,” Phys. Rev. D, vol. 106, no. 2, p. 023519, 2022.
- J. C. Hidalgo, L. E. Padilla, and G. German, “Production of PBHs from inflaton structures,” Phys. Rev. D, vol. 107, no. 6, p. 063519, 2023.
- L. E. Padilla, J. C. Hidalgo, and G. German, “Constraining inflationary potentials with inflaton PBHs,” Mar 2023.
- I. Zaballa, A. M. Green, K. A. Malik, and M. Sasaki, “Constraints on the primordial curvature perturbation from primordial black holes,” JCAP, vol. 03, p. 010, 2007.
- D. H. Lyth, K. A. Malik, M. Sasaki, and I. Zaballa, “Forming sub-horizon black holes at the end of inflation,” JCAP, vol. 01, p. 011, 2006.
- E. Torres-Lomas, J. C. Hidalgo, K. A. Malik, and L. A. Ureña López, “Formation of subhorizon black holes from preheating,” Phys. Rev. D, vol. 89, no. 8, p. 083008, 2014.
- B. J. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama, “New cosmological constraints on primordial black holes,” Phys. Rev. D, vol. 81, p. 104019, May 2010.
- B. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama, “Constraints on primordial black holes,” Reports on Progress in Physics, vol. 84, p. 116902, dec 2021.
- E. de Jong, J. C. Aurrekoetxea, and E. A. Lim, “Primordial black hole formation with full numerical relativity,” JCAP, vol. 03, no. 03, p. 029, 2022.
- L. E. Padilla, J. C. Hidalgo, and D. Núñez, “Long-wavelength nonlinear perturbations of a complex scalar field,” Phys. Rev. D, vol. 104, no. 8, p. 083513, 2021.
- W. H. Press and P. Schechter, “Formation of galaxies and clusters of galaxies by selfsimilar gravitational condensation,” Astrophys. J., vol. 187, pp. 425–438, 1974.
- L. E. Padilla, J. C. Hidalgo, T. D. Gomez-Aguilar, K. A. Malik, and G. German, “Primordial black hole formation during slow-reheating: A review,” 2 2024.
- T. Harada, C.-M. Yoo, and K. Kohri, “Threshold of primordial black hole formation,” Phys. Rev. D, vol. 88, no. 8, p. 084051, 2013. [Erratum: Phys.Rev.D 89, 029903 (2014)].
- T. Harada, C.-M. Yoo, K. Kohri, K.-i. Nakao, and S. Jhingan, “Primordial black hole formation in the matter-dominated phase of the Universe,” Astrophys. J., vol. 833, no. 1, p. 61, 2016.
- T. Harada, C.-M. Yoo, K. Kohri, and K.-I. Nakao, “Spins of primordial black holes formed in the matter-dominated phase of the Universe,” Phys. Rev. D, vol. 96, no. 8, p. 083517, 2017. [Erratum: Phys.Rev.D 99, 069904 (2019)].
- A. M. Green, A. R. Liddle, K. A. Malik, and M. Sasaki, “A New calculation of the mass fraction of primordial black holes,” Phys. Rev. D, vol. 70, p. 041502, 2004.
- I. Musco, “Threshold for primordial black holes: Dependence on the shape of the cosmological perturbations,” Phys. Rev. D, vol. 100, p. 123524, Dec 2019.
- A. Escrivà, C. Germani, and R. K. Sheth, “Universal threshold for primordial black hole formation,” Phys. Rev. D, vol. 101, p. 044022, Feb 2020.
- A. Escrivà, C. Germani, and R. K. Sheth, “Analytical thresholds for black hole formation in general cosmological backgrounds,” JCAP, vol. 01, p. 030, 2021.
- C. Germani and T. Prokopec, “On primordial black holes from an inflection point,” Physics of the dark universe, vol. 18, pp. 6–10, 2017.
- S. Clesse and J. García-Bellido, “Massive primordial black holes from hybrid inflation as dark matter and the seeds of galaxies,” Physical Review D, vol. 92, no. 2, p. 023524, 2015.
- J. Garcia-Bellido, A. D. Linde, and D. Wands, “Density perturbations and black hole formation in hybrid inflation,” Phys. Rev. D, vol. 54, pp. 6040–6058, 1996.
- D. H. Lyth, “The hybrid inflation waterfall and the primordial curvature perturbation,” JCAP, vol. 05, p. 022, 2012.
- A. Linde, S. Mooij, and E. Pajer, “Gauge field production in supergravity inflation: Local non-gaussianity and primordial black holes,” Physical Review D, vol. 87, no. 10, p. 103506, 2013.
- C. T. Byrnes, P. S. Cole, and S. P. Patil, “Steepest growth of the power spectrum and primordial black holes,” JCAP, vol. 06, p. 028, 2019.
- P. Carrilho, K. A. Malik, and D. J. Mulryne, “Dissecting the growth of the power spectrum for primordial black holes,” Phys. Rev. D, vol. 100, no. 10, p. 103529, 2019.
- T. D. Gomez-Aguilar, L. E. Padilla, E. Erfani, and J. C. Hidalgo, “Constraints on primordial black holes for nonstandard cosmologies,” 8 2023.
- K. Kohri and T. Terada, “Semianalytic calculation of gravitational wave spectrum nonlinearly induced from primordial curvature perturbations,” Phys. Rev. D, vol. 97, no. 12, p. 123532, 2018.
- K. Kohri and T. Terada, “Semianalytic calculation of gravitational wave spectrum nonlinearly induced from primordial curvature perturbations,” Phys. Rev. D, vol. 97, p. 123532, Jun 2018.
- L. T. Witkowski, “SIGWfast: a python package for the computation of scalar-induced gravitational wave spectra,” 9 2022.
- P. Campeti, E. Komatsu, D. Poletti, and C. Baccigalupi, “Measuring the spectrum of primordial gravitational waves with cmb, pta and laser interferometers,” Journal of Cosmology and Astroparticle Physics, vol. 2021, p. 012, jan 2021.
- M. A. G. Garcia, K. Kaneta, Y. Mambrini, and K. A. Olive, “Inflaton Oscillations and Post-Inflationary Reheating,” JCAP, vol. 04, p. 012, 2021.
- K. Inomata, M. Kawasaki, K. Mukaida, T. Terada, and T. T. Yanagida, “Gravitational Wave Production right after a Primordial Black Hole Evaporation,” Phys. Rev. D, vol. 101, no. 12, p. 123533, 2020.
- M. Pearce, L. Pearce, G. White, and C. Balázs, “Gravitational Wave Signals From Early Matter Domination: Interpolating Between Fast and Slow Transitions,” 11 2023.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.