Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Intermediate-mass-ratio inspirals with general dynamical friction in dark matter minispikes (2405.19240v3)

Published 29 May 2024 in astro-ph.HE

Abstract: The intermediate-mass-ratio inspirals (IMRIs) may be surrounded by dark matter (DM) minispikes. The dynamical friction from these DM minispike structures can affect the dynamics and the gravitational wave (GW) emission of the IMRIs. We analyze the effects of general dynamical friction, with a particular contribution from DM particles moving faster than the stellar-mass black hole in an eccentric IMRI. Our calculation show that these DM particles tends to eccentricify the orbit, therefore the evolution of the eccentricity depends on the competition between the fast moving DM particles and the slow moving DM particles. The results show that the dynamical friction enhances the eccentricity when $\gamma_\mathrm{sp}\lesssim2.0$, and the general dynamical friction is able to increase the eccentricity. We also analyze the effects of general dynamical friction on the GW characteristic strain. The results indicate that the characteristic strain is suppressed at lower frequencies, and the peak value of the characteristic strain occurs at higher frequencies as the power law index of DM minispike $\gamma_\mathrm{sp}$ increases. For the first time, a relation between the frequency peak value of characteristic strain of GWs and $\gamma_\mathrm{sp}$ is established. Using this analytical relation, the presence of DM and its halo density may be determined potentially from future GW data.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (13)
  1. R. Abbott and Others, Astron. Astrophys. 659, A84 (2022), arXiv:2105.15120 [astro-ph.HE] .
  2. R. Abbott and Others, Phys. Rev. D 109, 22001 (2024), arXiv:2108.01045 .
  3. S. Chandrasekhar, Astrophys. J.  97, 255 (1943).
  4. P. Amaro-Seoane et al. (LISA),   (2017), arXiv:1702.00786 [astro-ph.IM] .
  5. W.-R. Hu and Y.-L. Wu, Natl. Sci. Rev. 4, 685 (2017).
  6. J. Luo et al. (TianQin), Class. Quant. Grav. 33, 035010 (2016), arXiv:1512.02076 [astro-ph.IM] .
  7. X.-J. Yue and Z. Cao, Phys. Rev. D 100, 043013 (2019).
  8. X.-J. Yue and W.-B. Han, Phys. Rev. D 97, 064003 (2018).
  9. N. Becker and L. Sagunski, Phys. Rev. D 107, 083003 (2023), arXiv:2211.05145 [gr-qc] .
  10. F. Dosopoulou, “Dynamical friction in dark matter spikes: corrections to chandrasekhar’s formula,”  (2023), arXiv:2305.17281 [astro-ph.HE] .
  11. M. Maggiore, Gravitational Waves. Vol. 1: Theory and Experiments (Oxford University Press, 2007).
  12. P. C. Peters and J. Mathews, Phys. Rev. 131, 435 (1963).
  13. K. Martel and E. Poisson, Phys. Rev. D 60, 124008 (1999), arXiv:gr-qc/9907006 .

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 1 like.