2000 character limit reached
On the Problem of Separating Variables in Multivariate Polynomial Ideals (2405.19223v1)
Published 29 May 2024 in cs.SC
Abstract: For a given ideal I in K[x_1,...,x_n,y_1,...,y_m] in a polynomial ring with n+m variables, we want to find all elements that can be written as f-g for some f in K[x_1,...,x_n] and some g in K[y_1,...,y_m], i.e., all elements of I that contain no term involving at the same time one of the x_1,...,x_n and one of the y_1,...,y_m. For principal ideals and for ideals of dimension zero, we give a algorithms that compute all these polynomials in a finite number of steps.
- An introduction to Gröbner bases, volume 3. American Mathematical Society, Providence, 1994.
- A proof of a theorem by Fried and MacRae and applications to the composition of polynomial functions. Archiv der Mathematik, 97:115–124, 2011.
- Polynomial decompositon algorithms. Journal of Symbolic Computation, 1(2):159–168, 1985.
- The diophantine equation f(x)=g(y)𝑓𝑥𝑔𝑦f(x)=g(y)italic_f ( italic_x ) = italic_g ( italic_y ). Acta Arithmetica, 95(3):261–288, 2000.
- Yuri F. Bilu. Quadratic factors of f(x)−g(y)𝑓𝑥𝑔𝑦f(x)-g(y)italic_f ( italic_x ) - italic_g ( italic_y ). Acta Arithmetica, 90(4):341–355, 1999.
- The diophantine equation f(x)−g(y)𝑓𝑥𝑔𝑦f(x)-g(y)italic_f ( italic_x ) - italic_g ( italic_y ). Acta Arithmetica, 95(3):261–288, 2000.
- Franz Binder. Fast computations in the lattice of polynomial rational function fields. In Proceedings of ISSAC’96, pages 43–48, New York, 1996. ACM.
- Mireille Bousquet-Melou. An elementary solution of Gessel’s walks in the quadrant. Advances in Mathematics, 303:1171–1189, 2016.
- Separating variables in bivariate polynomial ideals. In Proceedings of ISSAC’20, pages 54–61, New York, 2020. ACM.
- J.W.S. Cassels. Factorization of polynomials in several variables. In Proceedings of the 15th Scandinavian Congress Oslo, pages 1–17, 1969.
- Factorisations explicites de g(y)−h(z)𝑔𝑦ℎ𝑧g(y)-h(z)italic_g ( italic_y ) - italic_h ( italic_z ). Acta Arithmetica, 87(4):291–317, 1999.
- Equations of the form f(x)=g(y)𝑓𝑥𝑔𝑦f(x)=g(y)italic_f ( italic_x ) = italic_g ( italic_y ). The Quarterly Journal of Mathematics, 12(1):304–312, 1961.
- A. Ehrenfeucht. Kryterium absolutnej nierozkładalności wielomianów. Commentationes Mathematicae, 2(1):167–169, 1956.
- Michael D. Fried. The field of definition of function fields and the problem in the reducibility of polynomials in two variables. Illinois Journal of Mathematics, 17(1):128–146, 1973.
- On curves with separated variables. Mathematische Annalen, 180:220–226, 1969.
- Josef Schicho. A note on a theorem of Fried and MacRae. Archiv der Mathematik, 65:239–243, 1995.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.