Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On $p$-adic $L$-functions of elliptic curves and the ideal class groups of the division fields (2405.19142v2)

Published 29 May 2024 in math.NT

Abstract: Let $E$ be an elliptic curve defined over $\mathbb{Q}$ and $F$ be $\mathbb{Q}$ or an imaginary quadratic field with certain conditions. Our research object in this article is the ideal class group $\mathrm{Cl}(F_E)$ of the $p$-division field $F_E := F(E[p])$ of $E$ over $F$ for an odd prime number $p$. More precisely, we investigate the non-vanishing of the $E[p]$-component in the semi-simplification of $\mathrm{Cl}(F_E)/p\mathrm{Cl}(F_E)$ as an $\mathbb{F}_p[\mathrm{Gal}(F_E/F)]$-module when $E[p]$ is an irreducible $\mathrm{Gal}(F_E /F)$-module. When the analytic rank of $E$ over $F$ is 1, we establish a new relationship between the non-vanishing of the $E[p]$-component and the p-divisibility of a certain $p$-adic analytic quantity associated with $E$. The quantity is defined by the leading coefficient of the cyclotomic $p$-adic $L$-function of $E$ when $F = \mathbb{Q}$ and by that of the anticyclotomic $p$-adic $L$-function of $E$ when $F$ is the imaginary quadratic field.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. A. Agashe and W. Stein. Visibility of shafarevich-tate groups of abelian varieties. Journal of Number Theory, 97(1):171–185, 2002.
  2. D. Benois. p𝑝pitalic_p-adic heights and p𝑝pitalic_p-adic hodge theory, 2014, 1412.7305.
  3. Generalized Heegner cycles and p𝑝pitalic_p-adic Rankin L𝐿Litalic_L-series. Duke Mathematical Journal, 162(6):1033 – 1148, 2013.
  4. On the modularity of elliptic curves over ℚℚ\mathbb{Q}blackboard_Q: wild 3-adic exercises. J. Amer. Math. Soc., 14(4):843–939, 2001.
  5. On derivatives of Kato’s euler system for elliptic curves, 2020, arXiv:1910.07404.
  6. A proof of Perrin-Riou’s Heegner point main conjecture. Algebra Number Theory, 15(7):1627–1653, 2021.
  7. Derived p𝑝pitalic_p-adic heights and the leading coefficient of the Bertolini–Darmon–Prasanna p𝑝pitalic_p-adic L𝐿Litalic_L-function, 2023, arXiv:2308.10474.
  8. P. Colmez. La conjecture de Birch et Swinnerton-Dyer p𝑝pitalic_p-adique. In Séminaire Bourbaki : volume 2002/2003, exposés 909-923, number 294 in Astérisque, pages 251–319. Association des amis de Nicolas Bourbaki, Société mathématique de France, Paris, 2004. talk:919.
  9. N. Dainobu. Ideal class groups of division fields of elliptic curves and everywhere unramified rational points, 2023, arXiv:2304.05035.
  10. V. G. Drinfel’d. Two theorems on modular curves. Funkcional. Anal. i Priložen., 7(2):83–84, 1973.
  11. R. Greenberg. Iwasawa theory for elliptic curves, volume 1716 of Lecture Notes in Math. Springer, Berlin, 1999.
  12. B. Gross and D. Zagier. Heegner points and derivatives of L𝐿Litalic_L-series. Inventiones mathematicae, 84:225–320, 1986.
  13. J. Herbrand. Sur les classes des corps circulaires. Journal de Mathématiques Pures et Appliquées, 11:417–441, 1932.
  14. K. Kato. p𝑝pitalic_p-adic Hodge theory and values of zeta functions of modular forms. Astérisque, (295):ix, 117–290, 2004. Cohomologies p𝑝pitalic_p-adiques et applications arithmétiques. III.
  15. S. Kobayashi. The p𝑝pitalic_p-adic Gross-Zagier formula for elliptic curves at supersingular primes. Invent. Math., 191(3):527–629, 2013.
  16. S.-i. Kobayashi. Iwasawa theory for elliptic curves at supersingular primes. Invent. Math., 152(1):1–36, 2003.
  17. V. A. Kolyvagin. Finiteness of E⁢(ℚ)𝐸ℚE(\mathbb{Q})italic_E ( blackboard_Q ) and Sha(E/ℚ)𝐸ℚ(E/\mathbb{Q})( italic_E / blackboard_Q ) for a subclass of Weil curves. Izv. Akad. Nauk SSSR Ser. Mat., 52(3):522–540, 670–671, 1988.
  18. V. A. Kolyvagin. Euler systems. In The Grothendieck Festschrift, Vol. II, volume 87 of Progr. Math., pages 435–483. Birkhäuser Boston, Boston, MA, 1990.
  19. T. LMFDB Collaboration. The L𝐿Litalic_L-functions and modular forms database. https://www.lmfdb.org, 2024. [Online; accessed 29 May 2024].
  20. J. I. Manin. Parabolic points and zeta functions of modular curves. Izv. Akad. Nauk SSSR Ser. Mat., 36:19–66, 1972.
  21. B. Mazur. Rational points of abelian varieties with values in towers of number fields. Invent. Math., 18:183–266, 1972.
  22. On p𝑝pitalic_p-adic analogues of the conjectures of Birch and Swinnerton-Dyer. Invent. Math., 84(1):1–48, 1986.
  23. J. Nekovář. Selmer complexes. Astérisque, 310:viii+559, 2006.
  24. B. Perrin-Riou. Points de Heegner et dérivées de fonctions L𝐿Litalic_L p𝑝pitalic_p-adiques. Invent. Math., 89(3):455–510, 1987.
  25. B. Perrin-Riou. Fonctions L𝐿Litalic_L  p𝑝pitalic_p-adiques d’une courbe elliptique et points rationnels. Annales de l’Institut Fourier, 43(4):945–995, 1993.
  26. B. Perrin-Riou. Théorie d’Iwasawa des représentations p𝑝pitalic_p-adiques sur un corps local. Invent. Math., 115(1):81–161, 1994. With an appendix by Jean-Marc Fontaine.
  27. D. Prasad. A proposal for non-abelian Herbrand-Ribet, 2017. http://www.math.iitb.ac.in/~dprasad/ribet1.pdf.
  28. D. Prasad and S. Shekhar. Relating the Tate-Shafarevich group of an elliptic curve with the class group. Pacific J. Math., 312(1):203–218, 2021.
  29. K. A. Ribet. A modular construction of unramified p𝑝pitalic_p-extensions of ℚ⁢(μp)ℚsubscript𝜇𝑝\mathbb{Q}(\mu_{p})blackboard_Q ( italic_μ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ). Invent. Math., 34(3):151–162, 1976.
  30. P. Schneider. p𝑝pitalic_p-adic height pairings. ii. Inventiones mathematicae, 79:329–374, 1985.
  31. J. H. Silverman. The Arithmetic of Elliptic Curves. Graduate texts in mathematics. Springer, Dordrecht, 2009.
  32. C. Skinner and E. Urban. The Iwasawa main conjectures for GL2subscriptGL2\rm GL_{2}roman_GL start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT. Invent. Math., 195(1):1–277, 2014.
  33. F. Sprung. Iwasawa theory for elliptic curves at supersingular primes: A pair of main conjectures. Journal of Number Theory, 132(7):1483–1506, 2012.
  34. F. Sprung. The iwasawa main conjecture for elliptic curves at odd supersingular primes, 2016, arXiv:1610.10017.
  35. R. Taylor and A. Wiles. Ring-theoretic properties of certain Hecke algebras. Ann. of Math. (2), 141(3):553–572, 1995.
  36. X. Wan. Iwasawa main conjecture for supersingular elliptic curves and bsd conjecture, 2021, arXiv:1411.6352.
  37. A. Wiles. Modular elliptic curves and Fermat’s last theorem. Ann. of Math. (2), 141(3):443–551, 1995.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 8 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube