On $p$-adic $L$-functions of elliptic curves and the ideal class groups of the division fields (2405.19142v2)
Abstract: Let $E$ be an elliptic curve defined over $\mathbb{Q}$ and $F$ be $\mathbb{Q}$ or an imaginary quadratic field with certain conditions. Our research object in this article is the ideal class group $\mathrm{Cl}(F_E)$ of the $p$-division field $F_E := F(E[p])$ of $E$ over $F$ for an odd prime number $p$. More precisely, we investigate the non-vanishing of the $E[p]$-component in the semi-simplification of $\mathrm{Cl}(F_E)/p\mathrm{Cl}(F_E)$ as an $\mathbb{F}_p[\mathrm{Gal}(F_E/F)]$-module when $E[p]$ is an irreducible $\mathrm{Gal}(F_E /F)$-module. When the analytic rank of $E$ over $F$ is 1, we establish a new relationship between the non-vanishing of the $E[p]$-component and the p-divisibility of a certain $p$-adic analytic quantity associated with $E$. The quantity is defined by the leading coefficient of the cyclotomic $p$-adic $L$-function of $E$ when $F = \mathbb{Q}$ and by that of the anticyclotomic $p$-adic $L$-function of $E$ when $F$ is the imaginary quadratic field.
- A. Agashe and W. Stein. Visibility of shafarevich-tate groups of abelian varieties. Journal of Number Theory, 97(1):171–185, 2002.
- D. Benois. p𝑝pitalic_p-adic heights and p𝑝pitalic_p-adic hodge theory, 2014, 1412.7305.
- Generalized Heegner cycles and p𝑝pitalic_p-adic Rankin L𝐿Litalic_L-series. Duke Mathematical Journal, 162(6):1033 – 1148, 2013.
- On the modularity of elliptic curves over ℚℚ\mathbb{Q}blackboard_Q: wild 3-adic exercises. J. Amer. Math. Soc., 14(4):843–939, 2001.
- On derivatives of Kato’s euler system for elliptic curves, 2020, arXiv:1910.07404.
- A proof of Perrin-Riou’s Heegner point main conjecture. Algebra Number Theory, 15(7):1627–1653, 2021.
- Derived p𝑝pitalic_p-adic heights and the leading coefficient of the Bertolini–Darmon–Prasanna p𝑝pitalic_p-adic L𝐿Litalic_L-function, 2023, arXiv:2308.10474.
- P. Colmez. La conjecture de Birch et Swinnerton-Dyer p𝑝pitalic_p-adique. In Séminaire Bourbaki : volume 2002/2003, exposés 909-923, number 294 in Astérisque, pages 251–319. Association des amis de Nicolas Bourbaki, Société mathématique de France, Paris, 2004. talk:919.
- N. Dainobu. Ideal class groups of division fields of elliptic curves and everywhere unramified rational points, 2023, arXiv:2304.05035.
- V. G. Drinfel’d. Two theorems on modular curves. Funkcional. Anal. i Priložen., 7(2):83–84, 1973.
- R. Greenberg. Iwasawa theory for elliptic curves, volume 1716 of Lecture Notes in Math. Springer, Berlin, 1999.
- B. Gross and D. Zagier. Heegner points and derivatives of L𝐿Litalic_L-series. Inventiones mathematicae, 84:225–320, 1986.
- J. Herbrand. Sur les classes des corps circulaires. Journal de Mathématiques Pures et Appliquées, 11:417–441, 1932.
- K. Kato. p𝑝pitalic_p-adic Hodge theory and values of zeta functions of modular forms. Astérisque, (295):ix, 117–290, 2004. Cohomologies p𝑝pitalic_p-adiques et applications arithmétiques. III.
- S. Kobayashi. The p𝑝pitalic_p-adic Gross-Zagier formula for elliptic curves at supersingular primes. Invent. Math., 191(3):527–629, 2013.
- S.-i. Kobayashi. Iwasawa theory for elliptic curves at supersingular primes. Invent. Math., 152(1):1–36, 2003.
- V. A. Kolyvagin. Finiteness of E(ℚ)𝐸ℚE(\mathbb{Q})italic_E ( blackboard_Q ) and Sha(E/ℚ)𝐸ℚ(E/\mathbb{Q})( italic_E / blackboard_Q ) for a subclass of Weil curves. Izv. Akad. Nauk SSSR Ser. Mat., 52(3):522–540, 670–671, 1988.
- V. A. Kolyvagin. Euler systems. In The Grothendieck Festschrift, Vol. II, volume 87 of Progr. Math., pages 435–483. Birkhäuser Boston, Boston, MA, 1990.
- T. LMFDB Collaboration. The L𝐿Litalic_L-functions and modular forms database. https://www.lmfdb.org, 2024. [Online; accessed 29 May 2024].
- J. I. Manin. Parabolic points and zeta functions of modular curves. Izv. Akad. Nauk SSSR Ser. Mat., 36:19–66, 1972.
- B. Mazur. Rational points of abelian varieties with values in towers of number fields. Invent. Math., 18:183–266, 1972.
- On p𝑝pitalic_p-adic analogues of the conjectures of Birch and Swinnerton-Dyer. Invent. Math., 84(1):1–48, 1986.
- J. Nekovář. Selmer complexes. Astérisque, 310:viii+559, 2006.
- B. Perrin-Riou. Points de Heegner et dérivées de fonctions L𝐿Litalic_L p𝑝pitalic_p-adiques. Invent. Math., 89(3):455–510, 1987.
- B. Perrin-Riou. Fonctions L𝐿Litalic_L p𝑝pitalic_p-adiques d’une courbe elliptique et points rationnels. Annales de l’Institut Fourier, 43(4):945–995, 1993.
- B. Perrin-Riou. Théorie d’Iwasawa des représentations p𝑝pitalic_p-adiques sur un corps local. Invent. Math., 115(1):81–161, 1994. With an appendix by Jean-Marc Fontaine.
- D. Prasad. A proposal for non-abelian Herbrand-Ribet, 2017. http://www.math.iitb.ac.in/~dprasad/ribet1.pdf.
- D. Prasad and S. Shekhar. Relating the Tate-Shafarevich group of an elliptic curve with the class group. Pacific J. Math., 312(1):203–218, 2021.
- K. A. Ribet. A modular construction of unramified p𝑝pitalic_p-extensions of ℚ(μp)ℚsubscript𝜇𝑝\mathbb{Q}(\mu_{p})blackboard_Q ( italic_μ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ). Invent. Math., 34(3):151–162, 1976.
- P. Schneider. p𝑝pitalic_p-adic height pairings. ii. Inventiones mathematicae, 79:329–374, 1985.
- J. H. Silverman. The Arithmetic of Elliptic Curves. Graduate texts in mathematics. Springer, Dordrecht, 2009.
- C. Skinner and E. Urban. The Iwasawa main conjectures for GL2subscriptGL2\rm GL_{2}roman_GL start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT. Invent. Math., 195(1):1–277, 2014.
- F. Sprung. Iwasawa theory for elliptic curves at supersingular primes: A pair of main conjectures. Journal of Number Theory, 132(7):1483–1506, 2012.
- F. Sprung. The iwasawa main conjecture for elliptic curves at odd supersingular primes, 2016, arXiv:1610.10017.
- R. Taylor and A. Wiles. Ring-theoretic properties of certain Hecke algebras. Ann. of Math. (2), 141(3):553–572, 1995.
- X. Wan. Iwasawa main conjecture for supersingular elliptic curves and bsd conjecture, 2021, arXiv:1411.6352.
- A. Wiles. Modular elliptic curves and Fermat’s last theorem. Ann. of Math. (2), 141(3):443–551, 1995.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.