Papers
Topics
Authors
Recent
2000 character limit reached

Constructing new geometries: a generalized approach to halving for hypertopes (2405.19050v1)

Published 29 May 2024 in math.CO and math.GR

Abstract: Given a residually connected incidence geometry $\Gamma$ that satisfies two conditions, denoted $(B_1)$ and $(B_2)$, we construct a new geometry $H(\Gamma)$ with properties similar to those of $\Gamma$. This new geometry $H(\Gamma)$ is inspired by a construction of Percsy, Percsy and Leemans [1]. We show how $H(\Gamma)$ relates to the classical halving operation on polytopes, allowing us to generalize the halving operation to a broader class of geometries, that we call non-degenerate leaf hypertopes. Finally, we apply this generalization to cubic toroids in order to generate new examples of regular hypertopes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. C. Lefèvre-Percsy, N. Percsy, and D. Leemans, “New geometries for finite groups and polytopes,” Bull. Belg. Math. Soc. Simon Stevin, vol. 7, no. 4, pp. 583–610, 2000.
  2. Cambridge University Press, 2002.
  3. J. Tits, “Groupes et géométries de coxeter, notes polycopiées,” Institut des Hautes Études Scientifiques, Paris, 1961.
  4. Springer Science & Business Media, 2013.
  5. P. McMullen, “Combinatorially regular polytopes,” Mathematika, vol. 14, no. 2, p. 142–150, 1967.
  6. B. Grünbaum, “Regularity of graphs, complexes and designs,” in Problèms Combinatoire et Théorie Theorie des Graphes, no. 260 in Colloques internationaux C.N.R.S., pp. 191–197, 1976.
  7. L. Danzer and E. Schulte, “Reguläre inzidenzkomplexe i,” Geometriae Dedicata, vol. 13, Dec. 1982.
  8. M. E. Fernandes, D. Leemans, and A. I. Weiss, “Highly symmetric hypertopes,” Aequationes Math., vol. 90, no. 5, pp. 1045–1067, 2016.
  9. M. E. Fernandes, D. Leemans, and A. I. Weiss, “An exploration of locally spherical regular hypertopes,” Discrete & Computational Geometry, vol. 64, pp. 519–534, 2020.
  10. C. A. Piedade, “Infinite families of hypertopes from centrally symmetric polytopes,” The Electronic Journal of Combinatorics, pp. P2–20, 2023.
  11. A. Montero and A. I. Weiss, “Proper locally spherical hypertopes of hyperbolic type,” Journal of Algebraic Combinatorics, vol. 55, no. 2, pp. 355–392, 2022.
  12. M. E. Fernandes, D. Leemans, and A. I. Weiss, “Hexagonal extensions of toroidal maps and hypermaps,” in Discrete Geometry and Symmetry: Dedicated to Károly Bezdek and Egon Schulte on the Occasion of Their 60th Birthdays, pp. 147–170, Springer, 2018.
  13. M. E. Fernandes, D. Leemans, C. A. Piedade, and A. I. Weiss, “Two families of locally toroidal regular 4-hypertopes arising from toroids,” in Contemporary Mathematics, vol. 764, pp. 89–100, American Mathematical Society, 2021.
  14. E. Ens, “Rank 4 toroidal hypertopes,” Ars Mathematica Contemporanea, vol. 15, no. 1, pp. 67–79, 2018.
  15. D.-D. Hou, Y.-Q. Feng, and D. Leemans, “Existence of regular 3-hypertopes with 2n chambers,” Discrete mathematics, vol. 342, no. 6, pp. 1857–1863, 2019.
  16. D. Catalano, M. E. Fernandes, I. Hubard, and D. Leemans, “Hypertopes with tetrahedral diagram,” The electronic journal of combinatorics, vol. 25, no. 3, pp. 3–22, 2018.
  17. W.-J. Zhang, “Abelian covers of regular hypertopes,” Journal of Algebra, vol. 650, pp. 123–144, 2024.
  18. A. Montero and A. Ivić Weiss, “Locally spherical hypertopes from generalised cubes,” The Art of Discrete and Applied Mathematics, Aug. 2020.
  19. B. Monson and E. Schulte, “Semiregular polytopes and amalgamated c-groups,” Advances in Mathematics, vol. 229, p. 2767–2791, Mar. 2012.
  20. F. Buekenhout, “Diagrams for geometries and groups,” J. Combin. Theory Ser. A, vol. 27, no. 2, pp. 121–151, 1979.
  21. J. Tits, “Sur les analogues algébriques des groupes semi-simples complexes,” in Colloque d’algèbre supérieure, tenu à Bruxelles du 19 au 22 décembre 1956, Centre Belge de Recherches Mathématiques, pp. 261–289, Établissements Ceuterick, Louvain, 1957.
  22. L. Danzer, “Regular Incidence-Complexes and Dimensionally Unbounded Sequences of Such, I,” in North-Holland Mathematics Studies, vol. 87, pp. 115–127, Elsevier, 1984.
  23. E. Schulte, “Regular incidence-polytopes with Euclidean or toroidal faces and vertex-figures,” Journal of Combinatorial Theory, Series A, vol. 40, pp. 305–330, Nov. 1985.
  24. Courier Corporation, 2004.
  25. M. Conder, “Schreier coset graphs and their applications (groups and combinatorics),” RIMS Kokyuroku, vol. 794, pp. 169–175, 1992.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: