Constructing new geometries: a generalized approach to halving for hypertopes (2405.19050v1)
Abstract: Given a residually connected incidence geometry $\Gamma$ that satisfies two conditions, denoted $(B_1)$ and $(B_2)$, we construct a new geometry $H(\Gamma)$ with properties similar to those of $\Gamma$. This new geometry $H(\Gamma)$ is inspired by a construction of Percsy, Percsy and Leemans [1]. We show how $H(\Gamma)$ relates to the classical halving operation on polytopes, allowing us to generalize the halving operation to a broader class of geometries, that we call non-degenerate leaf hypertopes. Finally, we apply this generalization to cubic toroids in order to generate new examples of regular hypertopes.
- C. Lefèvre-Percsy, N. Percsy, and D. Leemans, “New geometries for finite groups and polytopes,” Bull. Belg. Math. Soc. Simon Stevin, vol. 7, no. 4, pp. 583–610, 2000.
- Cambridge University Press, 2002.
- J. Tits, “Groupes et géométries de coxeter, notes polycopiées,” Institut des Hautes Études Scientifiques, Paris, 1961.
- Springer Science & Business Media, 2013.
- P. McMullen, “Combinatorially regular polytopes,” Mathematika, vol. 14, no. 2, p. 142–150, 1967.
- B. Grünbaum, “Regularity of graphs, complexes and designs,” in Problèms Combinatoire et Théorie Theorie des Graphes, no. 260 in Colloques internationaux C.N.R.S., pp. 191–197, 1976.
- L. Danzer and E. Schulte, “Reguläre inzidenzkomplexe i,” Geometriae Dedicata, vol. 13, Dec. 1982.
- M. E. Fernandes, D. Leemans, and A. I. Weiss, “Highly symmetric hypertopes,” Aequationes Math., vol. 90, no. 5, pp. 1045–1067, 2016.
- M. E. Fernandes, D. Leemans, and A. I. Weiss, “An exploration of locally spherical regular hypertopes,” Discrete & Computational Geometry, vol. 64, pp. 519–534, 2020.
- C. A. Piedade, “Infinite families of hypertopes from centrally symmetric polytopes,” The Electronic Journal of Combinatorics, pp. P2–20, 2023.
- A. Montero and A. I. Weiss, “Proper locally spherical hypertopes of hyperbolic type,” Journal of Algebraic Combinatorics, vol. 55, no. 2, pp. 355–392, 2022.
- M. E. Fernandes, D. Leemans, and A. I. Weiss, “Hexagonal extensions of toroidal maps and hypermaps,” in Discrete Geometry and Symmetry: Dedicated to Károly Bezdek and Egon Schulte on the Occasion of Their 60th Birthdays, pp. 147–170, Springer, 2018.
- M. E. Fernandes, D. Leemans, C. A. Piedade, and A. I. Weiss, “Two families of locally toroidal regular 4-hypertopes arising from toroids,” in Contemporary Mathematics, vol. 764, pp. 89–100, American Mathematical Society, 2021.
- E. Ens, “Rank 4 toroidal hypertopes,” Ars Mathematica Contemporanea, vol. 15, no. 1, pp. 67–79, 2018.
- D.-D. Hou, Y.-Q. Feng, and D. Leemans, “Existence of regular 3-hypertopes with 2n chambers,” Discrete mathematics, vol. 342, no. 6, pp. 1857–1863, 2019.
- D. Catalano, M. E. Fernandes, I. Hubard, and D. Leemans, “Hypertopes with tetrahedral diagram,” The electronic journal of combinatorics, vol. 25, no. 3, pp. 3–22, 2018.
- W.-J. Zhang, “Abelian covers of regular hypertopes,” Journal of Algebra, vol. 650, pp. 123–144, 2024.
- A. Montero and A. Ivić Weiss, “Locally spherical hypertopes from generalised cubes,” The Art of Discrete and Applied Mathematics, Aug. 2020.
- B. Monson and E. Schulte, “Semiregular polytopes and amalgamated c-groups,” Advances in Mathematics, vol. 229, p. 2767–2791, Mar. 2012.
- F. Buekenhout, “Diagrams for geometries and groups,” J. Combin. Theory Ser. A, vol. 27, no. 2, pp. 121–151, 1979.
- J. Tits, “Sur les analogues algébriques des groupes semi-simples complexes,” in Colloque d’algèbre supérieure, tenu à Bruxelles du 19 au 22 décembre 1956, Centre Belge de Recherches Mathématiques, pp. 261–289, Établissements Ceuterick, Louvain, 1957.
- L. Danzer, “Regular Incidence-Complexes and Dimensionally Unbounded Sequences of Such, I,” in North-Holland Mathematics Studies, vol. 87, pp. 115–127, Elsevier, 1984.
- E. Schulte, “Regular incidence-polytopes with Euclidean or toroidal faces and vertex-figures,” Journal of Combinatorial Theory, Series A, vol. 40, pp. 305–330, Nov. 1985.
- Courier Corporation, 2004.
- M. Conder, “Schreier coset graphs and their applications (groups and combinatorics),” RIMS Kokyuroku, vol. 794, pp. 169–175, 1992.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.