Papers
Topics
Authors
Recent
2000 character limit reached

Novel Synchronization Scheme for Cooperative ISAC Systems (2405.18775v3)

Published 29 May 2024 in eess.SP

Abstract: Carrier frequency and timing synchronization play the fundamental roles in cooperative integrating communication and sensing (ISAC). To mitigate the effects of synchronization error, this paper develops a novel synchronization scheme in cell-free massive multiple-input multiple-output (mMIMO) systems. First, we characterize the impacts of pilot contamination on synchronization performance, i.e., Cramer-Rao bound (CRB). Furthermore, a maximum likelihood algorithm is presented to estimate the CFO and TO among the pairing APs. Then, to minimize the sum of CRBs, we devise a synchronization strategy based on a pilot-sharing scheme by jointly optimizing the cluster classification, synchronization overhead, and pilot-sharing scheme, while simultaneously considering the overhead and each AP's synchronization requirements. To solve this NP-hard problem, we simplify it into two sub-problems, namely cluster classification problem and the pilot sharing problem. To strike a balance between synchronization performance and overhead, we first classify the clusters by using the K-means algorithm, and propose a criteria to find a good set of master APs. Then, the pilot-sharing scheme is obtained by using the swap-matching operations. Simulation results validate the accuracy of our derivations and demonstrate the effectiveness of the proposed scheme over the benchmark schemes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. G. Interdonato, E. Björnson, H. Quoc Ngo, P. Frenger, and E. G. Larsson, “Ubiquitous cell-free massive MIMO communications,” EURASIP J. Wireless Commun. and Netw., vol. 2019, no. 1, pp. 1–13, Dec. 2019.
  2. H. Q. Ngo, A. Ashikhmin, H. Yang, E. G. Larsson, and T. L. Marzetta, “Cell-free massive MIMO versus small cells,” IEEE Trans. Wireless Commun., vol. 16, no. 3, pp. 1834–1850, 2017.
  3. Q. Peng, H. Ren, C. Pan, N. Liu, and M. Elkashlan, “Resource allocation for uplink cell-free massive MIMO enabled URLLC in a smart factory,” IEEE Trans. Commun., vol. 71, no. 1, pp. 553–568, 2022.
  4. C.-X. Wang, X. You, X. Gao, X. Zhu, Z. Li, C. Zhang, H. Wang, Y. Huang, Y. Chen, H. Haas et al., “On the road to 6G: Visions, requirements, key technologies and testbeds,” IEEE Commun. Sur. Tuts., vol. 25, no. 2, pp. 905–974, 2nd Quar. 2023.
  5. H. Q. Ngo, L.-N. Tran, T. Q. Duong, M. Matthaiou, and E. G. Larsson, “On the total energy efficiency of cell-free massive MIMO,” IEEE Trans. Green Commun. Netw., vol. 2, no. 1, pp. 25–39, Mar. 2018.
  6. E. Björnson and L. Sanguinetti, “Making cell-free massive MIMO competitive with MMSE processing and centralized implementation,” IEEE Trans. Wireless Commun., vol. 19, no. 1, pp. 77–90, 2019.
  7. ——, “Scalable cell-free massive MIMO systems,” IEEE Trans. Commun., vol. 68, no. 7, pp. 4247–4261, Jul. 2020.
  8. H. Yan and I.-T. Lu, “Asynchronous reception effects on distributed massive MIMO-OFDM system,” IEEE Trans. Commun., vol. 67, no. 7, pp. 4782–4794, 2019.
  9. J. Li, M. Liu, P. Zhu, D. Wang, and X. You, “Impacts of asynchronous reception on cell-free distributed massive MIMO systems,” IEEE Trans. Veh. Technol., vol. 70, no. 10, pp. 11 106–11 110, 2021.
  10. H. Sallouha, A. Chiumento, S. Rajendran, and S. Pollin, “Localization in ultra narrow band IoT networks: Design guidelines and tradeoffs,” IEEE Internet Things J., vol. 6, no. 6, pp. 9375–9385, 2019.
  11. H. V. Balan, R. Rogalin, A. Michaloliakos, K. Psounis, and G. Caire, “Airsync: Enabling distributed multiuser MIMO with full spatial multiplexing,” IEEE/ACM Trans. Netw., vol. 21, no. 6, pp. 1681–1695, 2013.
  12. O. Abari, H. Rahul, D. Katabi, and M. Pant, “Airshare: Distributed coherent transmission made seamless,” in Proc. IEEE Conf. Comput. Commun. (INFOCOM).   IEEE, 2015, pp. 1742–1750.
  13. K. Alemdar, D. Varshney, S. Mohanti, U. Muncuk, and K. Chowdhury, “Rfclock: Timing, phase and frequency synchronization for distributed wireless networks,” in Proc. Int. Conf. Mobile Computing and Netw., 2021, pp. 15–27.
  14. M. Rashid and J. A. Nanzer, “Frequency and phase synchronization in distributed antenna arrays based on consensus averaging and kalman filtering,” IEEE Trans. Wireless Commun., vol. 22, no. 4, pp. 2789–2803, 2022.
  15. K. Matsuura, K. Shin, D. Kobuchi, Y. Narusue, and H. Morikawa, “Synchronization strategy for distributed wireless power transfer with periodic frequency and phase synchronization,” IEEE Commun. Lett., vol. 27, no. 1, pp. 391–395, 2022.
  16. S. R. Mghabghab, A. Schlegel, and J. A. Nanzer, “Adaptive distributed transceiver synchronization over a 90 m microwave wireless link,” IEEE Trans. Antenn. Propag., vol. 70, no. 5, pp. 3688–3699, 2022.
  17. R. Rogalin, O. Y. Bursalioglu, H. Papadopoulos, G. Caire, A. F. Molisch, A. Michaloliakos, V. Balan, and K. Psounis, “Scalable synchronization and reciprocity calibration for distributed multiuser MIMO,” IEEE Trans. Wireless Commun., vol. 13, no. 4, pp. 1815–1831, 2014.
  18. Y. Feng, W. Zhang, Y. Ge, and H. Lin, “Frequency synchronization in distributed antenna systems: Pairing-based multi-CFO estimation, theoretical analysis, and optimal pairing scheme,” IEEE Trans. Commun., vol. 67, no. 4, pp. 2924–2938, 2018.
  19. U. K. Ganesan, R. Sarvendranath, and E. G. Larsson, “Beamsync: Over-the-air synchronization for distributed massive MIMO systems,” IEEE Trans. Wireless Commun., 2023.
  20. M. Attarifar, A. Abbasfar, and A. Lozano, “Random vs structured pilot assignment in cell-free massive MIMO wireless networks,” in Proc. IEEE Int. Conf. Commun. Workshops (ICCW), Jul. 2018, pp. 1–6.
  21. H. Liu, J. Zhang, X. Zhang, A. Kurniawan, T. Juhana, and B. Ai, “Tabu-search-based pilot assignment for cell-free massive MIMO systems,” IEEE Trans. Veh. Technol., vol. 69, no. 2, pp. 2286–2290, Feb. 2020.
  22. S. Buzzi, C. D’Andrea, M. Fresia, Y.-P. Zhang, and S. Feng, “Pilot assignment in cell-free massive MIMO based on the hungarian algorithm,” IEEE Wireless Commun. Lett., vol. 10, no. 1, pp. 34–37, Jan. 2021.
  23. H. Liu, J. Zhang, S. Jin, and B. Ai, “Graph coloring based pilot assignment for cell-free massive MIMO systems,” IEEE Trans. Veh. Technol., vol. 69, no. 8, pp. 9180–9184, Aug. 2020.
  24. W. Zeng, Y. He, B. Li, and S. Wang, “Pilot assignment for cell free massive MIMO systems using a weighted graphic framework,” IEEE Trans. Veh. Technol., vol. 70, no. 6, pp. 6190–6194, Jun. 2021.
  25. Q. Peng, H. Ren, M. Dong, M. Elkashlan, K.-K. Wong, and L. Hanzo, “Resource allocation for cell-free massive MIMO-aided URLLC systems relying on pilot sharing,” IEEE J. Sel. Areas Commun., vol. 41, no. 7, pp. 2193–2207, Jul. 2023.
  26. T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y. Wu, “An efficient k-means clustering algorithm: Analysis and implementation,” IEEE Trans. Pattern Anal. Machine Intelligence, vol. 24, no. 7, pp. 881–892, 2002.
  27. C. Pan, H. Mehrpouyan, Y. Liu, M. Elkashlan, and N. Arumugam, “Joint pilot allocation and robust transmission design for ultra-dense user-centric TDD C-RAN with imperfect CSI,” IEEE Trans. Wireless Commun., vol. 17, no. 3, pp. 2038–2053, 2018.
  28. E. Bodine-Baron, C. Lee, A. Chong, B. Hassibi, and A. Wierman, “Peer effects and stability in matching markets,” in International Symposium on Algorithmic Game Theory.   Springer, 2011, pp. 117–129.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.