Papers
Topics
Authors
Recent
2000 character limit reached

VBIM-Net: Variational Born Iterative Network for Inverse Scattering Problems (2405.18731v4)

Published 29 May 2024 in eess.SP, cs.AI, and physics.comp-ph

Abstract: Recently, studies have shown the potential of integrating field-type iterative methods with deep learning (DL) techniques in solving inverse scattering problems (ISPs). In this article, we propose a novel Variational Born Iterative Network, namely, VBIM-Net, to solve the full-wave ISPs with significantly improved structural rationality and inversion quality. The proposed VBIM-Net emulates the alternating updates of the total electric field and the contrast in the variational Born iterative method (VBIM) by multiple layers of subnetworks. We embed the analytical calculation of the contrast variation into each subnetwork, converting the scattered field residual into an approximate contrast variation and then enhancing it by a U-Net, thus avoiding the requirement of matched measurement dimension and grid resolution as in existing approaches. The total field and contrast of each layer's output is supervised in the loss function of VBIM-Net, imposing soft physical constraints on the variables in the subnetworks, which benefits the model's performance. In addition, we design a training scheme with extra noise to enhance the model's stability. Extensive numerical results on synthetic and experimental data both verify the inversion quality, generalization ability, and robustness of the proposed VBIM-Net. This work may provide some new inspiration for the design of efficient field-type DL schemes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. A. R. Mangel, D. Linneman, P. Sprinkle, P. Jaysaval, J. Thomle, and C. Strickland, “Multifrequency electromagnetic geophysical tools for evaluating the hydrologic conditions and performance of evapotranspiration barriers,” Journal of Environmental Management, vol. 303, p. 114123, 2022.
  2. H. Kagiwada, R. Kalaba, S. Timko, and S. Ueno, “Associate memories for system identification: Inverse problems in remote sensing,” Mathematical and Computer Modelling, vol. 14, pp. 200–202, 1990.
  3. X. Tong, Z. Zhang, Y. Zhang, Z. Yang, C. Huang, K.-K. Wong, and M. Debbah, “Environment sensing considering the occlusion effect: A multi-view approach,” IEEE Transactions on Signal Processing, vol. 70, pp. 3598–3615, 2022.
  4. X. Zhuge and A. G. Yarovoy, “A sparse aperture MIMO-SAR-based UWB imaging system for concealed weapon detection,” IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 1, pp. 509–518, 2010.
  5. K. Tan, X. Chen, S. Wu, and G. Fang, “Efficient frequency scaling algorithm for short-range 3-d holographic imaging based on a scanning mimo array,” IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 9, pp. 3885–3897, 2020.
  6. A. Abubakar, P. M. Van den Berg, and J. J. Mallorqui, “Imaging of biomedical data using a multiplicative regularized contrast source inversion method,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 7, pp. 1761–1771, 2002.
  7. R. Chandra, H. Zhou, I. Balasingham, and R. M. Narayanan, “On the opportunities and challenges in microwave medical sensing and imaging,” IEEE transactions on biomedical engineering, vol. 62, no. 7, pp. 1667–1682, 2015.
  8. X. Tong, Z. Zhang, J. Wang, C. Huang, and M. Debbah, “Joint multi-user communication and sensing exploiting both signal and environment sparsity,” IEEE Journal of Selected Topics in Signal Processing, vol. 15, no. 6, pp. 1409–1422, 2021.
  9. X. Tong, Z. Zhang, and Z. Yang, “Multi-view sensing for wireless communications: Architectures, designs, and opportunities,” IEEE Communications Magazine, 2023.
  10. M. Slaney, A. C. Kak, and L. E. Larsen, “Limitations of imaging with first-order diffraction tomography,” IEEE transactions on microwave theory and techniques, vol. 32, no. 8, pp. 860–874, 1984.
  11. A. Devaney, “Inverse-scattering theory within the Rytov approximation,” Optics letters, vol. 6, no. 8, pp. 374–376, 1981.
  12. K. Belkebir, P. C. Chaumet, and A. Sentenac, “Superresolution in total internal reflection tomography,” JOSA A, vol. 22, no. 9, pp. 1889–1897, 2005.
  13. T. Yin, Z. Wei, and X. Chen, “Non-iterative methods based on singular value decomposition for inverse scattering problems,” IEEE Transactions on Antennas and Propagation, vol. 68, no. 6, pp. 4764–4773, 2020.
  14. Y. Wang and W. C. Chew, “An iterative solution of the two-dimensional electromagnetic inverse scattering problem,” International Journal of Imaging Systems and Technology, vol. 1, no. 1, pp. 100–108, 1989.
  15. W. C. Chew and Y.-M. Wang, “Reconstruction of two-dimensional permittivity distribution using the distorted born iterative method,” IEEE transactions on medical imaging, vol. 9, no. 2, pp. 218–225, 1990.
  16. N. Zaiping, Y. Feng, Z. Yanwen, and Z. Yerong, “Variational born iteration method and its applications to hybrid inversion,” IEEE transactions on geoscience and remote sensing, vol. 38, no. 4, pp. 1709–1715, 2000.
  17. P. M. Van Den Berg and R. E. Kleinman, “A contrast source inversion method,” Inverse problems, vol. 13, no. 6, p. 1607, 1997.
  18. X. Chen, “Subspace-based optimization method for solving inverse-scattering problems,” IEEE Transactions on Geoscience and Remote Sensing, vol. 48, no. 1, pp. 42–49, 2009.
  19. X. Ye and X. Chen, “Subspace-based distorted-Born iterative method for solving inverse scattering problems,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 12, pp. 7224–7232, 2017.
  20. Z. Liu and Z. Nie, “Subspace-based variational Born iterative method for solving inverse scattering problems,” IEEE Geoscience and Remote Sensing Letters, vol. 16, no. 7, pp. 1017–1020, 2019.
  21. M. Vauhkonen, D. Vadász, P. A. Karjalainen, E. Somersalo, and J. P. Kaipio, “Tikhonov regularization and prior information in electrical impedance tomography,” IEEE transactions on medical imaging, vol. 17, no. 2, pp. 285–293, 1998.
  22. P. Van den Berg and R. E. Kleinman, “A total variation enhanced modified gradient algorithm for profile reconstruction,” Inverse Problems, vol. 11, no. 3, p. L5, 1995.
  23. J. D. Shea, B. D. Van Veen, and S. C. Hagness, “A TSVD analysis of microwave inverse scattering for breast imaging,” IEEE Transactions on Biomedical Engineering, vol. 59, no. 4, pp. 936–945, 2011.
  24. O. Ronneberger, “U-net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention, vol. 9351, 2015, p. 234.
  25. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” Advances in neural information processing systems, vol. 27, 2014.
  26. Z. Wei and X. Chen, “Deep-learning schemes for full-wave nonlinear inverse scattering problems,” IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 4, pp. 1849–1860, 2018.
  27. R. Song, Y. Huang, K. Xu, X. Ye, C. Li, and X. Chen, “Electromagnetic inverse scattering with perceptual generative adversarial networks,” IEEE Transactions on Computational Imaging, vol. 7, pp. 689–699, 2021.
  28. Z. Wei and X. Chen, “Physics-inspired convolutional neural network for solving full-wave inverse scattering problems,” IEEE Transactions on Antennas and Propagation, vol. 67, no. 9, pp. 6138–6148, 2019.
  29. Y. Wang, Z. Zong, S. He, and Z. Wei, “Multiple-space deep learning schemes for inverse scattering problems,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1–11, 2023.
  30. Y. Sanghvi, Y. Kalepu, and U. K. Khankhoje, “Embedding deep learning in inverse scattering problems,” IEEE Transactions on Computational Imaging, vol. 6, pp. 46–56, 2019.
  31. Y. Zhong and X. Chen, “Twofold subspace-based optimization method for solving inverse scattering problems,” Inverse Problems, vol. 25, no. 8, p. 085003, 2009.
  32. J. Liu, H. Zhou, T. Ouyang, Q. Liu, and Y. Wang, “Physical model-inspired deep unrolling network for solving nonlinear inverse scattering problems,” IEEE transactions on antennas and propagation, vol. 70, no. 2, pp. 1236–1249, 2021.
  33. Y. Zhang, M. Lambert, A. Fraysse, and D. Lesselier, “Unrolled convolutional neural network for full-wave inverse scattering,” IEEE Transactions on Antennas and Propagation, vol. 71, no. 1, pp. 947–956, 2022.
  34. Y. Liu, H. Zhao, R. Song, X. Chen, C. Li, and X. Chen, “SOM-Net: Unrolling the subspace-based optimization for solving full-wave inverse scattering problems,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–15, 2022.
  35. H. S. Beerappa, M. Erramshetty, and A. Magdum, “Deep learning assisted distorted Born iterative method for solving electromagnetic inverse scattering problems,” Progress In Electromagnetics Research C, vol. 133, pp. 65–79, 2023.
  36. T. Shan, Z. Lin, X. Song, M. Li, F. Yang, and S. Xu, “Neural Born iterative method for solving inverse scattering problems: 2D cases,” IEEE Transactions on Antennas and Propagation, vol. 71, no. 1, pp. 818–829, 2022.
  37. T. Shan, J. Zeng, X. Song, R. Guo, M. Li, F. Yang, and S. Xu, “Physics-informed supervised residual learning for electromagnetic modeling,” IEEE Transactions on Antennas and Propagation, vol. 71, no. 4, pp. 3393–3407, 2023.
  38. Y. Wang, Z. Zong, S. He, R. Song, and Z. Wei, “Push the generalization limitation of learning approaches by multi-domain weight-sharing for full-wave inverse scattering,” IEEE Transactions on Geoscience and Remote Sensing, 2023.
  39. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Iransactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.
  40. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.
  41. K. Belkebir and A. Tijhuis, “Using multiple frequency information in the iterative solution of a two-dimensional nonlinear inverse problem,” in Proceedings Progress in Electromagnetics Research Symposium, PIERS 1996, 8 July 1996, Innsbruck, Germany.   Universität Innsbruck, 1996, p. 353.
  42. J.-M. Geffrin, P. Sabouroux, and C. Eyraud, “Free space experimental scattering database continuation: experimental set-up and measurement precision,” Inverse Problems, vol. 21, no. 6, p. S117, nov 2005.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.