Constraining the primordial black hole abundance through Big-Bang nucleosynthesis (2405.18493v2)
Abstract: We investigate the scenario in which primordial black holes (PBHs) with masses Mpbh < 109 g undergo Hawking evaporation, around the Big-Bang nucleosynthesis (BBN) epoch. The evaporation process modifies the Universe's expansion rate and the baryon-to-photon ratio, leading to an alteration of the primordial abundance of light nuclei. We present numerical solutions for the set of equations describing this physics, considering different values of PBH masses and abundances at their formation, showing how their evaporation impacts the abundances of light nuclei, obtained by incorporating the non-standard Hubble rate and baryon-to-photon ratio into the BBN code PArthENoPE. The results are then used to place upper bounds for the PBH relative abundance at formation in the range 108 g < Mpbh < 109 g, providing the strongest constraints existing to-date in this mass range.
- Y. B. Zel’dovich and I. D. Novikov, Sov. Astron. 10, 602 (1967).
- S. Hawking, Mon. Not. Roy. Astron. Soc. 152, 75 (1971).
- B. J. Carr and S. W. Hawking, Mon. Not. Roy. Astron. Soc. 168, 399 (1974).
- B. J. Carr, Astrophys. J. 201, 1 (1975).
- M. Shibata and M. Sasaki, Phys. Rev. D 60, 084002 (1999), arXiv:gr-qc/9905064 .
- J. C. Niemeyer and K. Jedamzik, Phys. Rev. D 59, 124013 (1999), arXiv:astro-ph/9901292 .
- A. M. Green and B. J. Kavanagh, J. Phys. G 48, 043001 (2021), arXiv:2007.10722 [astro-ph.CO] .
- N. Duechting, Phys. Rev. D 70, 064015 (2004), arXiv:astro-ph/0406260 .
- S. W. Hawking, Commun. Math. Phys. 43, 199 (1975), [Erratum: Commun.Math.Phys. 46, 206 (1976)].
- K. Kohri and J. Yokoyama, Phys. Rev. D 61, 023501 (2000), arXiv:astro-ph/9908160 .
- J. Auffinger, Prog. Part. Nucl. Phys. 131, 104040 (2023), arXiv:2206.02672 [astro-ph.CO] .
- D. N. Page and S. W. Hawking, Astrophys. J. 206, 1 (1976).
- K. Mazde and L. Visinelli, JCAP 01, 021 (2023), arXiv:2209.14307 [astro-ph.CO] .
- D. N. Page, Phys. Rev. D 16, 2402 (1977).
- N. Aghanim et al. (Planck), Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO] .
- D. N. Schramm and M. S. Turner, Rev. Mod. Phys. 70, 303 (1998), arXiv:astro-ph/9706069 .
- G. Steigman, Ann. Rev. Nucl. Part. Sci. 57, 463 (2007), arXiv:0712.1100 [astro-ph] .
- M. Pospelov and J. Pradler, Ann. Rev. Nucl. Part. Sci. 60, 539 (2010), arXiv:1011.1054 [hep-ph] .
- R. L. Workman et al. (Particle Data Group), PTEP 2022, 083C01 (2022).
- V. F. Mukhanov, Int. J. Theor. Phys. 43, 669 (2004), arXiv:astro-ph/0303073 .
- T. F. Adams, Astron. Astrophys. 50, 461 (1976).
- I. Masina, Eur. Phys. J. Plus 135, 552 (2020), arXiv:2004.04740 [hep-ph] .
- F. Iocco, Mem. Soc. Astron. Ital. Suppl. 22, 19 (2012), arXiv:1206.2396 [astro-ph.GA] .
- P. A. Zyla et al. (Particle Data Group), Progress of Theoretical and Experimental Physics 2020, 083C01 (2020), https://academic.oup.com/ptep/article-pdf/2020/8/083C01/34673722/ptaa104.pdf .
- B. V. Vainer and P. D. Naselskii, Soviet Astron. 22, 138 (1978).
- J. C. Niemeyer and K. Jedamzik, Phys. Rev. Lett. 80, 5481 (1998), arXiv:astro-ph/9709072 .
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.