Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Hybrid Multi-Head Physics-informed Neural Network for Depth Estimation in Terahertz Imaging (2405.18317v2)

Published 28 May 2024 in physics.optics

Abstract: Terahertz (THz) imaging is one of the hotspots in the field of optics, where the depth information retrieval is a key factor to restore the three-dimensional appearance of objects. Impressive results for depth extraction in visible and infrared wave range have been demonstrated through deep learning (DL). Among them, most DL methods are merely data-driven, lacking relevant physical priors, which thus request for a large amount of experimental data to train the DL models.However, large training data acquirement in the THz domain is challenging due to the requirements of environmental and system stability, as well as the time-consuming data acquisition process. To overcome this limitation, this paper incorporates a complete physical model representing the THz image formation process into traditional DL networks to retrieve the depth information of objects. The most significant advantage is the ability to use it without pre-training, thereby eliminating the need for tens of thousands of labeled data. Through experiments validation, we demonstrate that by providing diffraction patterns of planar objects with their upper and lower halves individually masked, the proposed physics-informed neural network (NN) can automatically optimize and, ultimately, reconstruct the depth of the object through interaction between the NN and a physical model. The obtained results represent the initial steps towards achieving fast holographic THz imaging using reference-free beams and low-cost power detection.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube