Bi-directional models of `radically synthetic' differential geometry
Abstract: The radically synthetic foundation for smooth geometry formulated in [Law11] postulates a space T with the property that it has a unique point and, out of the monoid TT of endomorphisms, it extracts a submonoid R which, in many cases, is the (commutative) multiplication of a rig structure. The rig R is said to be bi-directional if its subobject of invertible elements has two connected components. In this case, R may be equipped with a pre-order compatible with the rig structure. We adjust the construction of `well-adapted' models of Synthetic Differential Geometry in order to build the first pre-cohesive toposes with a bi-directional R. We also show that, in one of these pre-cohesive variants, the pre-order on R, derived radically synthetically from bi-directionality, coincides with that defined in the original model.
- Théorie de topos et cohomologie étale des schémas, volume 269-270 of Lecture notes in mathematics. Springer-Verlag, 1972. (SGA4).
- J. L. Bell. A primer of infinitesimal analysis. Cambridge: Cambridge University Press, 1998.
- Synthetic differential topology, volume 448 of Lond. Math. Soc. Lect. Note Ser. Cambridge: Cambridge University Press, 2018.
- Differential structure, tangent structure, and SDG. Appl. Categ. Struct., 22(2):331–417, 2014.
- M. Demazure and P. Gabriel. Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs. Masson & Cie, Éditeur, Paris, 1970. Avec un appendice Corps de classes local par Michiel Hazewinkel.
- E. J. Dubuc. Sur les modeles de la géométrie différentielle synthetique. Cah. Topologie Géom. Différ. Catégoriques, 20:231–279, 1979.
- P. T. Johnstone. Remarks on punctual local connectedness. Theory Appl. Categ., 25:51–63, 2011.
- A. Kock. A simple axiomatics for differentiation. Math. Scand., 40:183–193, 1977.
- A. Kock. Synthetic differential geometry. 2nd ed. Cambridge: Cambridge University Press, 2nd ed. edition, 2006.
- A. Kock. Synthetic geometry of manifolds, volume 180 of Camb. Tracts Math. Cambridge: Cambridge University Press, 2010.
- R. Lavendhomme. Basic concepts of synthetic differential geometry. Dordrecht: Kluwer Academic Publishers, 1996.
- F. W. Lawvere. Outline of synthetic differential geometry. Notes of the February 1998 talks in the Buffalo Geometry Seminar. With corrections (Nov. 1998). Available from Lawvere’s webpage.
- F. W. Lawvere. Categorical dynamics. Var. Publ. Ser., Aarhus Univ., 30:1–28, 1979.
- F. W. Lawvere. Categories of spaces may not be generalized spaces as exemplified by directed graphs. Repr. Theory Appl. Categ., 9:1–7, 2005. Reprinted from Rev. Colombiana Mat. 20 (1986), no. 3-4, 179–185.
- F. W. Lawvere. Axiomatic cohesion. Theory Appl. Categ., 19:41–49, 2007.
- F. W. Lawvere. Euler’s continuum functorially vindicated. In Logic, Mathematics, Philosophy: Vintage Enthusiasms, volume 75 of The Western Ontario Series in Philosophy of Science, pages 249–254. Springer Science+Bussiness Media B. V., 2011.
- M. Menni. Sufficient cohesion over atomic toposes. Cah. Topol. Géom. Différ. Catég., 55(2):113–149, 2014.
- M. Menni. A Basis Theorem for 2-rigs and Rig Geometry. Cah. Topol. Géom. Différ. Catég., 62(4):451–490, 2021.
- M. Menni. The hyperconnected maps that are local. J. Pure Appl. Algebra, 225(5):15, 2021. Id/No 106596.
- F. Marmolejo and M. Menni. Level ϵitalic-ϵ\epsilonitalic_ϵ. Cah. Topol. Géom. Différ. Catég., 60(4):450–477, 2019.
- I. Moerdijk and G. E. Reyes. Models for smooth infinitesimal analysis. Springer-Verlag, New York, 1991.
- J. Rosický. Abstract tangent functors. Diagrammes 12, 1984.
- D. Yetter. On right adjoints to exponential functors. J. Pure Appl. Algebra, 45:287–304, 1987.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.