Papers
Topics
Authors
Recent
2000 character limit reached

Bi-directional models of `radically synthetic' differential geometry

Published 28 May 2024 in math.CT | (2405.17748v1)

Abstract: The radically synthetic foundation for smooth geometry formulated in [Law11] postulates a space T with the property that it has a unique point and, out of the monoid TT of endomorphisms, it extracts a submonoid R which, in many cases, is the (commutative) multiplication of a rig structure. The rig R is said to be bi-directional if its subobject of invertible elements has two connected components. In this case, R may be equipped with a pre-order compatible with the rig structure. We adjust the construction of `well-adapted' models of Synthetic Differential Geometry in order to build the first pre-cohesive toposes with a bi-directional R. We also show that, in one of these pre-cohesive variants, the pre-order on R, derived radically synthetically from bi-directionality, coincides with that defined in the original model.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. Théorie de topos et cohomologie étale des schémas, volume 269-270 of Lecture notes in mathematics. Springer-Verlag, 1972. (SGA4).
  2. J. L. Bell. A primer of infinitesimal analysis. Cambridge: Cambridge University Press, 1998.
  3. Synthetic differential topology, volume 448 of Lond. Math. Soc. Lect. Note Ser. Cambridge: Cambridge University Press, 2018.
  4. Differential structure, tangent structure, and SDG. Appl. Categ. Struct., 22(2):331–417, 2014.
  5. M. Demazure and P. Gabriel. Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs. Masson & Cie, Éditeur, Paris, 1970. Avec un appendice Corps de classes local par Michiel Hazewinkel.
  6. E. J. Dubuc. Sur les modeles de la géométrie différentielle synthetique. Cah. Topologie Géom. Différ. Catégoriques, 20:231–279, 1979.
  7. P. T. Johnstone. Remarks on punctual local connectedness. Theory Appl. Categ., 25:51–63, 2011.
  8. A. Kock. A simple axiomatics for differentiation. Math. Scand., 40:183–193, 1977.
  9. A. Kock. Synthetic differential geometry. 2nd ed. Cambridge: Cambridge University Press, 2nd ed. edition, 2006.
  10. A. Kock. Synthetic geometry of manifolds, volume 180 of Camb. Tracts Math. Cambridge: Cambridge University Press, 2010.
  11. R. Lavendhomme. Basic concepts of synthetic differential geometry. Dordrecht: Kluwer Academic Publishers, 1996.
  12. F. W. Lawvere. Outline of synthetic differential geometry. Notes of the February 1998 talks in the Buffalo Geometry Seminar. With corrections (Nov. 1998). Available from Lawvere’s webpage.
  13. F. W. Lawvere. Categorical dynamics. Var. Publ. Ser., Aarhus Univ., 30:1–28, 1979.
  14. F. W. Lawvere. Categories of spaces may not be generalized spaces as exemplified by directed graphs. Repr. Theory Appl. Categ., 9:1–7, 2005. Reprinted from Rev. Colombiana Mat. 20 (1986), no. 3-4, 179–185.
  15. F. W. Lawvere. Axiomatic cohesion. Theory Appl. Categ., 19:41–49, 2007.
  16. F. W. Lawvere. Euler’s continuum functorially vindicated. In Logic, Mathematics, Philosophy: Vintage Enthusiasms, volume 75 of The Western Ontario Series in Philosophy of Science, pages 249–254. Springer Science+Bussiness Media B. V., 2011.
  17. M. Menni. Sufficient cohesion over atomic toposes. Cah. Topol. Géom. Différ. Catég., 55(2):113–149, 2014.
  18. M. Menni. A Basis Theorem for 2-rigs and Rig Geometry. Cah. Topol. Géom. Différ. Catég., 62(4):451–490, 2021.
  19. M. Menni. The hyperconnected maps that are local. J. Pure Appl. Algebra, 225(5):15, 2021. Id/No 106596.
  20. F. Marmolejo and M. Menni. Level ϵitalic-ϵ\epsilonitalic_ϵ. Cah. Topol. Géom. Différ. Catég., 60(4):450–477, 2019.
  21. I. Moerdijk and G. E. Reyes. Models for smooth infinitesimal analysis. Springer-Verlag, New York, 1991.
  22. J. Rosický. Abstract tangent functors. Diagrammes 12, 1984.
  23. D. Yetter. On right adjoints to exponential functors. J. Pure Appl. Algebra, 45:287–304, 1987.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.