2000 character limit reached
Monotone two-scale methods for a class of integrodifferential operators and applications
Published 27 May 2024 in math.NA and cs.NA | (2405.17652v2)
Abstract: We develop a monotone, two-scale discretization for a class of integrodifferential operators of order $2s$, $s \in (0,1)$. We apply it to develop numerical schemes, and derive pointwise convergence rates, for linear and obstacle problems governed by such operators. As applications of the monotonicity, we provide error estimates for free boundaries and a convergent numerical scheme for a concave fully nonlinear, nonlocal, problem.
- A fractional Laplace equation: regularity of solutions and finite element approximations. SIAM J. Numer. Anal., 55(2):472–495, 2017.
- Numerical approximation of equations involving minimal/maximal operators by successive solution of obstacle problems. J. Comput. Appl. Math., 342:133–146, 2018.
- Analysis and approximation of a fractional Cahn-Hilliard equation. SIAM J. Numer. Anal., 55(4):1689–1718, 2017.
- Fractional Cahn-Hilliard, Allen-Cahn and porous medium equations. J. Differential Equations, 261(6):2935–2985, 2016.
- C. Baiocchi. Estimations d’erreur dans L∞superscript𝐿L^{\infty}italic_L start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT pour les inéquations à obstacle. In Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975),, Lecture Notes in Math., Vol. 606,, pages 27–34. ,, 1977.
- Global regularity for the free boundary in the obstacle problem for the fractional Laplacian. Amer. J. Math., 140(2):415–447, 2018.
- Jean Bertoin. Lévy processes. Cambridge tracts in mathematics n∘\,{}^{\circ}start_FLOATSUPERSCRIPT ∘ end_FLOATSUPERSCRIPT121. Cambridge University Press, 1996.
- On the rate of convergence for monotone numerical schemes for nonlocal Isaacs equations. SIAM J. Numer. Anal., 57(2):799–827, 2019.
- Error estimates for finite difference-quadrature schemes for a class of nonlocal Bellman equations with variable diffusion. In Stochastic analysis and partial differential equations, volume 429 of Contemp. Math., pages 19–31. Amer. Math. Soc., Providence, RI, 2007.
- Error estimates for a class of finite difference-quadrature schemes for fully nonlinear degenerate parabolic integro-PDEs. J. Hyperbolic Differ. Equ., 5(1):187–219, 2008.
- Obstacle problems and maximal operators. Adv. Nonlinear Stud., 16(2):355–362, 2016.
- Numerical methods for fractional diffusion. Comput. Vis. Sci., 19(5-6):19–46, 2018.
- Numerical approximation of the integral fractional Laplacian. Numer. Math., 142(2):235–278, 2019.
- Numerical approximation of fractional powers of elliptic operators. Math. Comp., 84(295):2083–2110, 2015.
- Local energy estimates for the fractional Laplacian. SIAM J. Numer. Anal., 59(4):1918–1947, 2021.
- Besov regularity for the Dirichlet integral fractional Laplacian in Lipschitz domains. Journal of Functional Analysis, 284(6):109829, 2023.
- Weighted Sobolev regularity and rate of approximation of the obstacle problem for the integral fractional Laplacian. Math. Models Methods Appl. Sci., 29(14):2679–2717, 2019.
- On a fractional Monge-Ampère operator. Ann. PDE, 1(1):Art. 4, 47, 2015.
- Obstacle problems for integro-differential operators: regularity of solutions and free boundaries. Invent. Math., 208(3):1155–1211, 2017.
- An extension problem related to the fractional Laplacian. Comm. Partial Differential Equations, 32(7-9):1245–1260, 2007.
- Regularity theory for fully nonlinear integro-differential equations. Comm. Pure Appl. Math., 62(5):597–638, 2009.
- Smooth approximations of solutions to nonconvex fully nonlinear elliptic equations. In Nonlinear partial differential equations and related topics, volume 229 of Amer. Math. Soc. Transl. Ser. 2, pages 67–85. Amer. Math. Soc., Providence, RI, 2010.
- The Evans-Krylov theorem for nonlocal fully nonlinear equations. Ann. of Math. (2), 174(2):1163–1187, 2011.
- Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian. Invent. Math., 171(2):425–461, 2008.
- A finite element like scheme for integro-partial differential Hamilton-Jacobi-Bellman equations. SIAM J. Numer. Anal., 47(4):2407–2431, 2009.
- The fractional viscoelastic response of human breast tissue cells. Physical Biology, 12(4):046001, May 2015.
- Precise error bounds for numerical approximations of fractional HJB equations. arXiv:2308.16434, 2023.
- Discretization of fractional fully nonlinear equations by powers of discrete Laplacians. arXiv:2401.09926, 2024.
- P. G. Ciarlet. Basic error estimates for elliptic problems. In Handbook of numerical analysis, Vol. II, volume II of Handb. Numer. Anal., pages 17–351. North-Holland, Amsterdam, 1991.
- Financial Modelling with Jump Processes, volume 101. 01 2006.
- A general fractional porous medium equation. Comm. Pure Appl. Math., 65(9):1242–1284, 2012.
- Numerical methods for nonlocal and fractional models. Acta Numer., 29:1–124, 2020.
- Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation. SIAM J. Numer. Anal., 45(2):572–591, 2007.
- Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differential Equations, 22(3):558–576, 2006.
- Optimal stochastic switching and the Dirichlet problem for the Bellman equation. Trans. Amer. Math. Soc., 253:365–389, 1979.
- Integro-Differential elliptic equations. Progress in Mathematics. Birkhauser, 2024.
- R. K. Getoor. First passage times for symmetric stable processes in space. Trans. Amer. Math. Soc., 101:75–90, 1961.
- Gerd Grubb. Fractional Laplacians on domains, a development of Hörmander’s theory of μ𝜇\muitalic_μ-transmission pseudodifferential operators. Adv. Math., 268:478–528, 2015.
- A monotone discretization for integral fractional Laplacian on bounded Lipschitz domains: pointwise error estimates under Hölder regularity. SIAM J. Numer. Anal., 60(6):3052–3077, 2022.
- A monotone discretization for the fractional obstacle problem and its improved policy iteration. Fractal and Fractional, 7(8):634, 2023.
- Numerical methods for the fractional Laplacian: a finite difference–quadrature approach. SIAM J. Numer. Anal., 52(6):3056–3084, 2014.
- Numerical approximation of a fractional-in-space diffusion equation. I. Fract. Calc. Appl. Anal., 8(3):323–341, 2005.
- Numerical approximation of a fractional-in-space diffusion equation. II. With nonhomogeneous boundary conditions. Fract. Calc. Appl. Anal., 9(4):333–349, 2006.
- Schauder estimates for nonlocal fully nonlinear equations. Ann. Inst. H. Poincaré C Anal. Non Linéaire, 33(5):1375–1407, 2016.
- The obstacle problem for nonlinear integro-differential operators. Calc. Var. Partial Differential Equations, 55(3):Art. 63, 29, 2016.
- Optimal pointwise error estimates for two-scale methods for the Monge-Ampère equation. SIAM J. Numer. Anal., 56(3):1915–1941, 2018.
- P.-L. Lions and B. Mercier. Approximation numérique des équations de Hamilton-Jacobi-Bellman. RAIRO Anal. Numér., 14(4):369–393, 1980.
- What is the fractional Laplacian? A comparative review with new results. J. Comput. Phys., 404:109009, 62, 2020.
- Numerical analysis of strongly nonlinear PDEs. Acta Numer., 26:137–303, 2017.
- Chapter 2 — The Monge-Ampère equation. In Andrea Bonito and Ricardo H. Nochetto, editors, Geometric Partial Differential Equations - Part I, volume 21 of Handbook of Numerical Analysis, pages 105–219. Elsevier, 2020.
- Joachim Nitsche. L∞subscript𝐿L_{\infty}italic_L start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT-convergence of finite element approximations. In Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975),, Lecture Notes in Math., Vol. 606,, pages 261–274. ,, 1977.
- Two-scale method for the Monge-Ampère equation: convergence to the viscosity solution. Math. Comp., 88(316):637–664, 2019.
- Two-scale method for the Monge-Ampère equation: pointwise error estimates. IMA J. Numer. Anal., 39(3):1085–1109, 2019.
- Convergent two-scale filtered scheme for the Monge-Ampère equation. SIAM J. Sci. Comput., 41(2):B295–B319, 2019.
- Convergence rates for the classical, thin and fractional elliptic obstacle problems. Philos. Trans. Roy. Soc. A, 373(2050):20140449, 14, 2015.
- A PDE approach to fractional diffusion in general domains: a priori error analysis. Found. Comput. Math., 15(3):733–791, 2015.
- Fully localized a posteriori error estimators and barrier sets for contact problems. SIAM J. Numer. Anal., 42(5):2118–2135, 2005.
- Discrete ABP estimate and convergence rates for linear elliptic equations in non-divergence form. Found. Comput. Math., 18(3):537–593, 2018.
- A penalty scheme and policy iteration for nonlocal HJB variational inequalities with monotone nonlinearities. Comput. Math. Appl., 93:199–213, 2021.
- Xavier Ros-Oton. Nonlocal elliptic equations in bounded domains: a survey. Publ. Mat., 60(1):3–26, 2016.
- The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J. Math. Pures Appl. (9), 101(3):275–302, 2014.
- Boundary regularity for fully nonlinear integro-differential equations. Duke Math. J., 165(11):2079–2154, 2016.
- Regularity theory for general stable operators. J. Differential Equations, 260(12):8675–8715, 2016.
- Finite element approximation of the Isaacs equation. ESAIM Math. Model. Numer. Anal., 53(2):351–374, 2019.
- S. A. Silling. Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids, 48(1):175–209, 2000.
- Peridynamic states and constitutive modeling. J. Elasticity, 88(2):151–184, 2007.
- Luis Silvestre. Regularity of the obstacle problem for a fractional power of the Laplace operator. Comm. Pure Appl. Math., 60(1):67–112, 2007.
- Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian. The Journal of the Acoustical Society of America, 127(5):2741–2748, 2010.
- Convolution equations in a bounded region. Uspehi Mat. Nauk, (no. 3 (123)):89–152, 1965.
- Masakazu Yamamoto. Asymptotic expansion of solutions to the dissipative equation with fractional Laplacian. SIAM J. Math. Anal., 44(6):3786–3805, 2012.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.