Papers
Topics
Authors
Recent
Search
2000 character limit reached

Stepping into the Forest: Confronting Interacting Radiation Models for the Hubble Tension with Lyman-$α$ Data

Published 27 May 2024 in astro-ph.CO | (2405.17554v2)

Abstract: Models of interacting dark radiation have been shown to alleviate the Hubble tension. Extensions incorporating a coupling between dark matter and dark radiation (DM-DR) have been proposed as combined solutions to both the Hubble and $S_8$ tensions. A key feature of these extended models is a break in the matter power spectrum (MPS), suppressing power for modes that enter the horizon before the DM-DR interactions turn off. In scenarios with a massless mediator, modes that enter before matter-radiation equality get suppressed, whereas for massive mediators, the break is determined by the mediator mass, a free parameter. In this work, we test these models against probes of LSS: weak lensing, CMB lensing, full-shape galaxy clustering, and eBOSS measurements of the 1D Ly$\alpha\,$ forest flux power spectrum. The latter are the most constraining since they probe small scales where many models predict the largest deviations. In fact, already within $\Lambda{\rm CDM}\,$, the eBOSS Ly$\alpha\,$ data are in significant tension with Planck CMB data, with the Ly$\alpha\,$ data preferring a steeper slope of the MPS at $k \sim h \mathrm{Mpc}{-1}$. We find that the simplest dark radiation models, which improve the Hubble tension, worsen the fit to the Ly$\alpha\,$ data. However, models with DM-DR interactions can simultaneously address both tensions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (50)
  1. A. G. Riess et al., A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km/s/Mpc Uncertainty from the Hubble Space Telescope and the SH0ES Team,   (2021), arXiv:2112.04510 [astro-ph.CO] .
  2. N. Aghanim et al. (Planck), Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO] .
  3. W. L. Freedman et al., The Carnegie-Chicago Hubble Program. VIII. An Independent Determination of the Hubble Constant Based on the Tip of the Red Giant Branch 10.3847/1538-4357/ab2f73 (2019), arXiv:1907.05922 [astro-ph.CO] .
  4. S. Aiola et al. (ACT), The Atacama Cosmology Telescope: DR4 Maps and Cosmological Parameters, JCAP 12, 047, arXiv:2007.07288 [astro-ph.CO] .
  5. D. Dutcher et al. (SPT-3G), Measurements of the E-mode polarization and temperature-E-mode correlation of the CMB from SPT-3G 2018 data, Phys. Rev. D 104, 022003 (2021), arXiv:2101.01684 [astro-ph.CO] .
  6. L. Balkenhol et al. (-3G), A Measurement of the CMB Temperature Power Spectrum and Constraints on Cosmology from the SPT-3G 2018 TT/TE/EE Data Set,   (2022), arXiv:2212.05642 [astro-ph.CO] .
  7. N. Schöneberg, J. Lesgourgues, and D. C. Hooper, The BAO+BBN take on the Hubble tension, JCAP 10, 029, arXiv:1907.11594 [astro-ph.CO] .
  8. A. G. Adame et al. (DESI), DESI 2024 VI: Cosmological Constraints from the Measurements of Baryon Acoustic Oscillations,   (2024), arXiv:2404.03002 [astro-ph.CO] .
  9. D. M. Scolnic et al. (Pan-STARRS1), The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample, Astrophys. J. 859, 101 (2018), arXiv:1710.00845 [astro-ph.CO] .
  10. N. Blinov and G. Marques-Tavares, Interacting radiation after Planck and its implications for the Hubble Tension, JCAP 09, 029, arXiv:2003.08387 [astro-ph.CO] .
  11. C. Brust, Y. Cui, and K. Sigurdson, Cosmological Constraints on Interacting Light Particles, JCAP 08, 020, arXiv:1703.10732 [astro-ph.CO] .
  12. M. Escudero and S. J. Witte, The hubble tension as a hint of leptogenesis and neutrino mass generation, Eur. Phys. J. C 81, 515 (2021), arXiv:2103.03249 [hep-ph] .
  13. M. M. Ivanov, M. Simonović, and M. Zaldarriaga, Cosmological Parameters from the BOSS Galaxy Power Spectrum, JCAP 05, 042, arXiv:1909.05277 [astro-ph.CO] .
  14. T. M. C. Abbott et al. (DES), Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and weak lensing, Phys. Rev. D 105, 023520 (2022), arXiv:2105.13549 [astro-ph.CO] .
  15. C. Heymans et al., KiDS-1000 Cosmology: Multi-probe weak gravitational lensing and spectroscopic galaxy clustering constraints, Astron. Astrophys. 646, A140 (2021), arXiv:2007.15632 [astro-ph.CO] .
  16. S. Chabanier et al. (eBOSS), The one-dimensional power spectrum from the SDSS DR14 Lyα𝛼\alphaitalic_α forests, JCAP 07, 017, arXiv:1812.03554 [astro-ph.CO] .
  17. V. Iršič et al., The Lyman α𝛼\alphaitalic_α forest power spectrum from the XQ-100 Legacy Survey, Mon. Not. Roy. Astron. Soc. 466, 4332 (2017), arXiv:1702.01761 [astro-ph.CO] .
  18. K. K. Rogers and V. Poulin, 5⁢σ5𝜎5\sigma5 italic_σ tension between Planck cosmic microwave background and eBOSS Lyman-alpha forest and constraints on physics beyond ΛΛ\Lambdaroman_ΛCDM,   (2023), arXiv:2311.16377 [astro-ph.CO] .
  19. I. J. Allali, D. Aloni, and N. Schöneberg, Cosmological probes of Dark Radiation from Neutrino Mixing,   (2024a), arXiv:2404.16822 [astro-ph.CO] .
  20. I. J. Allali, A. Notari, and F. Rompineve, Dark Radiation with Baryon Acoustic Oscillations from DESI 2024 and the H0subscript𝐻0H_{0}italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT tension,  (2024b), arXiv:2404.15220 [astro-ph.CO] .
  21. S. Ghosh, S. Kumar, and Y. Tsai, Free-streaming and coupled dark radiation isocurvature perturbations: constraints and application to the Hubble tension, JCAP 05 (05), 014, arXiv:2107.09076 [astro-ph.CO] .
  22. S. Ghosh, D. W. R. Ho, and Y. Tsai, Dark Matter-Radiation Scattering Enhances CMB Phase Shift through Dark Matter-loading,   (2024), arXiv:2405.08064 [astro-ph.CO] .
  23. A. Berlin and N. Blinov, Thermal Dark Matter Below an MeV, Phys. Rev. Lett. 120, 021801 (2018), arXiv:1706.07046 [hep-ph] .
  24. A. Berlin and N. Blinov, Thermal neutrino portal to sub-MeV dark matter, Phys. Rev. D 99, 095030 (2019), arXiv:1807.04282 [hep-ph] .
  25. A. Berlin, N. Blinov, and S. W. Li, Dark Sector Equilibration During Nucleosynthesis, Phys. Rev. D 100, 015038 (2019), arXiv:1904.04256 [hep-ph] .
  26. C. Giovanetti, M. Schmaltz, and N. Weiner, Neutrino-Dark Sector Equilibration and Primordial Element Abundances,  (2024), arXiv:2402.10264 [hep-ph] .
  27. M. A. Buen-Abad, G. Marques-Tavares, and M. Schmaltz, Non-Abelian dark matter and dark radiation, Phys. Rev. D 92, 023531 (2015), arXiv:1505.03542 [hep-ph] .
  28. J. Lesgourgues, G. Marques-Tavares, and M. Schmaltz, Evidence for dark matter interactions in cosmological precision data?, JCAP 02, 037, arXiv:1507.04351 [astro-ph.CO] .
  29. Z. Pan, M. Kaplinghat, and L. Knox, Searching for Signatures of Dark matter-Dark Radiation Interaction in Observations of Large-scale Structure, Phys. Rev. D 97, 103531 (2018), arXiv:1801.07348 [astro-ph.CO] .
  30. S. Bashinsky and U. Seljak, Neutrino perturbations in CMB anisotropy and matter clustering, Phys. Rev. D 69, 083002 (2004), arXiv:astro-ph/0310198 .
  31. C.-P. Ma and E. Bertschinger, Cosmological perturbation theory in the synchronous and conformal Newtonian gauges, Astrophys. J. 455, 7 (1995), arXiv:astro-ph/9506072 .
  32. H. Rubira, A. Mazoun, and M. Garny, Full-shape BOSS constraints on dark matter interacting with dark radiation and lifting the S8 tension, JCAP 01, 034, arXiv:2209.03974 [astro-ph.CO] .
  33. G. Choi, T. T. Yanagida, and N. Yokozaki, A model of interacting dark matter and dark radiation for H0 and σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT tensions, JHEP 01, 127, arXiv:2010.06892 [hep-ph] .
  34. D. Blas, J. Lesgourgues, and T. Tram, The Cosmic Linear Anisotropy Solving System (CLASS) II: Approximation schemes, JCAP 07 (07), 034, arXiv:1104.2933 [astro-ph.CO] .
  35. T. Brinckmann and J. Lesgourgues, MontePython 3: boosted MCMC sampler and other features, Phys. Dark Univ. 24, 100260 (2019), arXiv:1804.07261 [astro-ph.CO] .
  36. A. Lewis, GetDist: a Python package for analysing Monte Carlo samples,   (2019), arXiv:1910.13970 [astro-ph.IM] .
  37. S. Alam et al. (BOSS), The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample, Mon. Not. Roy. Astron. Soc. 470, 2617 (2017), arXiv:1607.03155 [astro-ph.CO] .
  38. T. M. C. Abbott et al. (DES), The Dark Energy Survey: Cosmology Results With ~1500 New High-redshift Type Ia Supernovae Using The Full 5-year Dataset,   (2024), arXiv:2401.02929 [astro-ph.CO] .
  39. T. M. C. Abbott et al. (Kilo-Degree Survey, Dark Energy Survey), DES Y3 + KiDS-1000: Consistent cosmology combining cosmic shear surveys, Open J. Astrophys. 6, 2305.17173 (2023), arXiv:2305.17173 [astro-ph.CO] .
  40. F.-S. Kitaura et al., The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: mock galaxy catalogues for the BOSS Final Data Release, Mon. Not. Roy. Astron. Soc. 456, 4156 (2016), arXiv:1509.06400 [astro-ph.CO] .
  41. H. Gil-Marín et al. (BOSS), The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: BAO measurement from the LOS-dependent power spectrum of DR12 BOSS galaxies, Mon. Not. Roy. Astron. Soc. 460, 4210 (2016), arXiv:1509.06373 [astro-ph.CO] .
  42. G. D’Amico, L. Senatore, and P. Zhang, Limits on w𝑤witalic_wCDM from the EFTofLSS with the PyBird code, JCAP 01, 006, arXiv:2003.07956 [astro-ph.CO] .
  43. S. Alam et al. (eBOSS), Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Cosmological implications from two decades of spectroscopic surveys at the Apache Point Observatory, Phys. Rev. D 103, 083533 (2021), arXiv:2007.08991 [astro-ph.CO] .
  44. T. Simon, P. Zhang, and V. Poulin, Cosmological inference from the EFTofLSS: the eBOSS QSO full-shape analysis, JCAP 07, 041, arXiv:2210.14931 [astro-ph.CO] .
  45. A. J. Ross et al. (eBOSS), The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Large-scale structure catalogues for cosmological analysis, Mon. Not. Roy. Astron. Soc. 498, 2354 (2020), arXiv:2007.09000 [astro-ph.CO] .
  46. I. J. Allali, F. Rompineve, and M. P. Hertzberg, Dark sectors with mass thresholds face cosmological datasets, Phys. Rev. D 108, 023527 (2023), arXiv:2305.14166 [astro-ph.CO] .
  47. M. A. Fernandez, S. Bird, and M.-F. Ho, Cosmological Constraints from the eBOSS Lyman-α𝛼\alphaitalic_α Forest using the PRIYA Simulations,  (2023), arXiv:2309.03943 [astro-ph.CO] .
  48. C. Ravoux et al. (DESI), The Dark Energy Spectroscopic Instrument: one-dimensional power spectrum from first Ly α𝛼\alphaitalic_α forest samples with Fast Fourier Transform, Mon. Not. Roy. Astron. Soc. 526, 5118 (2023), arXiv:2306.06311 [astro-ph.CO] .
  49. N. G. Karaçaylı et al., Optimal 1D Lyα𝛼\alphaitalic_α Forest Power Spectrum Estimation – III. DESI early data, Mon. Not. Roy. Astron. Soc. 528, 3941 (2024), arXiv:2306.06316 [astro-ph.CO] .
  50. M. M. Ivanov, M. W. Toomey, and N. G. Karaçaylı, Fundamental physics with the Lyman-alpha forest: constraints on the growth of structure and neutrino masses from SDSS with effective field theory,   (2024), arXiv:2405.13208 [astro-ph.CO] .
Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.