Papers
Topics
Authors
Recent
2000 character limit reached

A One-Layer Decoder-Only Transformer is a Two-Layer RNN: With an Application to Certified Robustness (2405.17361v1)

Published 27 May 2024 in cs.CL

Abstract: This paper reveals a key insight that a one-layer decoder-only Transformer is equivalent to a two-layer Recurrent Neural Network (RNN). Building on this insight, we propose ARC-Tran, a novel approach for verifying the robustness of decoder-only Transformers against arbitrary perturbation spaces. Compared to ARC-Tran, current robustness verification techniques are limited either to specific and length-preserving perturbations like word substitutions or to recursive models like LSTMs. ARC-Tran addresses these limitations by meticulously managing position encoding to prevent mismatches and by utilizing our key insight to achieve precise and scalable verification. Our evaluation shows that ARC-Tran (1) trains models more robust to arbitrary perturbation spaces than those produced by existing techniques and (2) shows high certification accuracy of the resulting models.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.