Papers
Topics
Authors
Recent
Search
2000 character limit reached

$Ω$-Results for Exponential Sums Related to Maass Cusp Forms for $\mathrm{SL}_3(\mathbb Z)$

Published 27 May 2024 in math.NT | (2405.17340v2)

Abstract: We obtain $\Omega$-results for linear exponential sums with rational additive twists of small prime denominators weighted by Hecke eigenvalues of Maass cusp forms for the group $\mathrm{SL}_3(\mathbb Z)$. In particular, our $\Omega$-results match the expected conjectural upper bounds when the denominator of the twist is sufficiently small compared to the length of the sum. Non-trivial $\Omega$-results for sums over short segments are also obtained. Along the way we produce lower bounds for mean squares of the exponential sums in question and also improve the best known upper bound for these sums in some ranges of parameters.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. Valentin Blomer. Shifted convolution sums and subconvexity bounds for automorphic L𝐿Litalic_L-functions. Int. Math. Res. Not., (73):3905–3926, 2004.
  2. J. Brüdern. Einführung in die analytische Zahlentheorie. Springer, 1995.
  3. An extension of the Bourgain-Sarnak-Ziegler theorem with modular applications. Q. J. Math., 71(1):359–377, 2020.
  4. Kyle Czarnecki. Resonance sums for Rankin-Selberg products of S⁢Lm⁢(ℤ)𝑆subscript𝐿𝑚ℤSL_{m}(\mathbb{Z})italic_S italic_L start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ( blackboard_Z ) Maass cusp forms. J. Number Theory, 163:359–374, 2016.
  5. Anne-Maria Ernvall-Hytönen. On the mean square of short exponential sums related to cusp forms. Funct. Approx. Comment. Math., 45:97–104, 2011.
  6. Anne-Maria Ernvall-Hytönen. Mean square estimate for relatively short exponential sums involving Fourier coefficients of cusp forms. Ann. Acad. Sci. Fenn. Math., 40(1):385–395, 2015.
  7. Resonances and ΩΩ\Omegaroman_Ω-results for exponential sums related to Maass forms for SL⁢(n,ℤ)SL𝑛ℤ{\rm SL}(n,\mathbb{Z})roman_SL ( italic_n , blackboard_Z ). J. Number Theory, 153:135–157, 2015.
  8. On short exponential sums involving Fourier coefficients of holomorphic cusp forms. Int. Math. Res. Not. IMRN, (10):Art. ID. rnn022, 44, 2008.
  9. Strong orthogonality between the Möbius function, additive characters and Fourier coefficients of cusp forms. Compos. Math., 150(5):763–797, 2014.
  10. Summation formulae for coefficients of L𝐿Litalic_L-functions. Canad. J. Math., 57(3):494–505, 2005.
  11. Dorian Goldfeld. Automorphic forms and L𝐿Litalic_L-functions for the group GL⁢(n,ℝ)GL𝑛ℝ{\rm GL}(n,\mathbb{R})roman_GL ( italic_n , blackboard_R ), volume 99 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2006. With an appendix by Kevin A. Broughan.
  12. Voronoi formulas on GL⁢(n)GL𝑛{\rm GL}(n)roman_GL ( italic_n ). Int. Math. Res. Not., pages Art. ID 86295, 25, 2006.
  13. Gergely Harcos. An additive problem in the Fourier coefficients of cusp forms. Math. Ann., 326(2):347–365, 2003.
  14. Discorrelation of multiplicative functions with nilsequences and its application on coefficients of automorphic L𝐿Litalic_L-functions. Mathematika, 69(1):250–285, 2023.
  15. M. N. Huxley. Area, lattice points, and exponential sums, volume 13 of London Mathematical Society Monographs. New Series. The Clarendon Press, Oxford University Press, New York, 1996. Oxford Science Publications.
  16. Aleksandar Ivić. The Riemann zeta-function. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1985. The theory of the Riemann zeta-function with applications.
  17. Aleksandar Ivić. On the ternary additive divisor problem and the sixth moment of the zeta-function. In Sieve methods, exponential sums, and their applications in number theory (Cardiff, 1995), volume 237 of London Math. Soc. Lecture Note Ser., pages 205–243. Cambridge Univ. Press, Cambridge, 1997.
  18. Aleksandar Ivić. On the divisor function and the Riemann zeta-function in short intervals. Ramanujan J., 19(2):207–224, 2009.
  19. On Riesz means of the coefficients of the Rankin-Selberg series. Math. Proc. Cambridge Philos. Soc., 127(1):117–131, 1999.
  20. Henryk Iwaniec. Topics in classical automorphic forms, volume 17 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1997.
  21. Jesse Jääsaari. On short sums involving Fourier coefficients of Maass forms. J. Théor. Nombres Bordeaux, 32(3):761–793, 2020.
  22. On sums involving Fourier coefficients of Maass forms for SL⁢(3,ℤ)SL3ℤ{\rm SL}(3,\mathbb{Z})roman_SL ( 3 , blackboard_Z ). Funct. Approx. Comment. Math., 57(2):255–275, 2017.
  23. Corrections to: On sums involving Fourier coefficients of Maass forms for SL⁢(3,ℤ)SL3ℤ{\rm SL}(3,\mathbb{Z})roman_SL ( 3 , blackboard_Z ). Funct. Approx. Comment. Math., 62(1):59–62, 2020.
  24. M. Jutila. On exponential sums involving the divisor function. J. Reine Angew. Math., 355:173–190, 1985.
  25. M. Jutila. Lectures on a method in the theory of exponential sums, volume 80 of Tata Institute of Fundamental Research Lectures on Mathematics and Physics. Tata Institute of Fundamental Research, Bombay; by Springer-Verlag, Berlin, 1987.
  26. M. Jutila. On exponential sums involving the Ramanujan function. Proc. Indian Acad. Sci. Math. Sci., 97(1-3):157–166, 1987.
  27. Matti Jutila. The additive divisor problem and its analogs for Fourier coefficients of cusp forms. I. Math. Z., 223(3):435–461, 1996.
  28. Henry H. Kim. Functoriality for the exterior square of GL4subscriptGL4{\rm GL}_{4}roman_GL start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT and the symmetric fourth of GL2subscriptGL2{\rm GL}_{2}roman_GL start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT. J. Amer. Math. Soc., 16(1):139–183, 2003. With appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim and Peter Sarnak.
  29. Stephen Lester. On the variance of sums of divisor functions in short intervals. Proc. Amer. Math. Soc., 144(12):5015–5027, 2016.
  30. Xiaoqing Li. The central value of the Rankin-Selberg L𝐿Litalic_L-functions. Geom. Funct. Anal., 18(5):1660–1695, 2009.
  31. Yudell L. Luke. The special functions and their approximations, Vol. I, volume Vol. 53 of Mathematics in Science and Engineering. Academic Press, New York-London, 1969.
  32. Yudell L. Luke. Mathematical functions and their approximations. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1975.
  33. T. Meurman. On exponential sums involving the Fourier coefficients of Maass wave forms. J. Reine Angew. Math., 384:192–207, 1988.
  34. Stephen D. Miller. Cancellation in additively twisted sums on GL⁢(n)GL𝑛{\rm GL}(n)roman_GL ( italic_n ). Amer. J. Math., 128(3):699–729, 2006.
  35. Automorphic distributions, L𝐿Litalic_L-functions, and Voronoi summation for GL⁢(3)GL3{\rm GL}(3)roman_GL ( 3 ). Ann. of Math. (2), 164(2):423–488, 2006.
  36. Multiplicative number theory. I. Classical theory, volume 97 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2007.
  37. Ritabrata Munshi. Shifted convolution sums for GL⁢(3)×GL⁢(2)GL3GL2\mathrm{GL}(3)\times\mathrm{GL}(2)roman_GL ( 3 ) × roman_GL ( 2 ). Duke Math. J., 162(13):2345–2362, 2013.
  38. Ritabrata Munshi. The circle method and bounds for L𝐿Litalic_L-functions—I. Math. Ann., 358(1-2):389–401, 2014.
  39. Esa V. Vesalainen. Moments and oscillations of exponential sums related to cusp forms. Math. Proc. Cambridge Philos. Soc., 162(3):479–506, 2017.
  40. Distribution of Hecke eigenvalues of newforms in short intervals. Q. J. Math., 64(2):619–644, 2013.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.