2000 character limit reached
Moduli spaces in positive geometry (2405.17332v2)
Published 27 May 2024 in math.AG, hep-th, and math.CO
Abstract: These are lecture notes for five lectures given at MPI Leipzig in May 2024. We study the moduli space M_{0,n} of n distinct points on P1 as a positive geometry and a binary geometry. We develop mathematical formalism to study Cachazo-He-Yuan's scattering equations and the associated scalar and Yang-Mills amplitudes. We discuss open superstring amplitudes and relations to tropical geometry.
- Grassmannian Geometry of Scattering Amplitudes. Cambridge University Press, 2016.
- Unification of Residues and Grassmannian Dualities. JHEP, 01:049, 2011.
- Scattering Forms and the Positive Geometry of Kinematics, Color and the Worldsheet. JHEP, 05:096, 2018.
- Positive Geometries and Canonical Forms. JHEP, 11:039, 2017.
- Scalar-scaffolded gluons and the combinatorial origins of yang-mills theory. arXiv:2401.00041, 2024.
- All loop scattering as a counting problem. arXiv:2309.15913, 2023.
- Cluster configuration spaces of finite type. SIGMA Symmetry Integrability Geom. Methods Appl., 17:Paper No. 092, 41, 2021.
- Stringy canonical forms. J. High Energy Phys., (2):Paper No. 069, 59, 2021.
- Binary geometries, generalized particles and strings, and cluster algebras. Phys. Rev. D, 107(6):Paper No. 066015, 8, 2023.
- Non-perturbative geometries for planar 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 SYM amplitudes. J. High Energy Phys., (3):Paper No. 065, 14, 2021.
- Positive configuration space. Comm. Math. Phys., 384(2):909–954, 2021.
- The Amplituhedron. JHEP, 10:030, 2014.
- Integration rules for loop scattering equations. J. High Energy Phys., (11):080, front matter+19, 2015.
- Wondertopes. arXiv:2403.04610, 2024.
- Ruth Britto. Constructing scattering amplitudes. https://www.maths.tcd.ie/~britto/lecture-notes.pdf.
- Francis C. S. Brown. Multiple zeta values and periods of moduli spaces 𝔐0,nsubscript𝔐0𝑛\mathfrak{M}_{0,n}fraktur_M start_POSTSUBSCRIPT 0 , italic_n end_POSTSUBSCRIPT. Annales Sci. Ecole Norm. Sup., 42:371, 2009.
- Planar kinematics: Cyclic fixed points, mirror superpotential, k-dimensional catalan numbers, and root polytopes. arXiv:2010.09708, 2020.
- Scattering Equations: From Projective Spaces to Tropical Grassmannians. JHEP, 06:039, 2019.
- Color-dressed generalized biadjoint scalar amplitudes: Local planarity. arXiv:2212.11243, 2022.
- Scattering in Three Dimensions from Rational Maps. JHEP, 10:141, 2013.
- Scattering equations and Kawai-Lewellen-Tye orthogonality. Phys. Rev., D90(6):065001, 2014.
- Scattering of Massless Particles in Arbitrary Dimensions. Phys. Rev. Lett., 113(17):171601, 2014.
- Scattering of Massless Particles: Scalars, Gluons and Gravitons. JHEP, 07:033, 2014.
- The Momentum Amplituhedron. JHEP, 08:042, 2019.
- Proof of the formula of Cachazo, He and Yuan for Yang-Mills tree amplitudes in arbitrary dimension. J. High Energy Phys., (5):010, front matter+23, 2014.
- Lance J. Dixon. Calculating scattering amplitudes efficiently. arXiv:hep-ph/9601359.
- Scattering amplitudes in gauge theory and gravity. Cambridge University Press, Cambridge, 2015.
- Regularity theorem for totally nonnegative flag varieties. J. Amer. Math. Soc., 35(2):513–579, 2022.
- The totally nonnegative Grassmannian is a ball. Adv. Math., 397:Paper No. 108123, 23, 2022.
- Parity duality for the amplituhedron. Compos. Math., 156(11):2207–2262, 2020.
- The momentum amplituhedron of SYM and ABJM from twistor-string maps. J. High Energy Phys., (2):Paper No. 148, 32, 2022.
- Stringy canonical forms and binary geometries from associahedra, cyclohedra and generalized permutohedra. J. High Energy Phys., (10):054, 35, 2020.
- Likelihood geometry. In Combinatorial algebraic geometry, volume 2108 of Lecture Notes in Math., pages 63–117. Springer, Cham, 2014.
- June Huh. The maximum likelihood degree of a very affine variety. Compos. Math., 149(8):1245–1266, 2013.
- Notes on Scattering Amplitudes as Differential Forms. JHEP, 10:054, 2018.
- Steven N. Karp. Sign variation, the Grassmannian, and total positivity. J. Combin. Theory Ser. A, 145:308–339, 2017.
- Sean Keel. Intersection theory of moduli space of stable n𝑛nitalic_n-pointed curves of genus zero. Trans. Amer. Math. Soc., 330(2):545–574, 1992.
- Positroid varieties: juggling and geometry. Compos. Math., 149(10):1710–1752, 2013.
- Manifestly crossing invariant parametrization of n meson amplitude. Nucl. Phys., B12:517–536, 1969.
- Polar homology and holomorphic bundles. volume 359, pages 1413–1427. 2001. Topological methods in the physical sciences (London, 2000).
- Thomas Lam. in preparation.
- Thomas Lam. Amplituhedron cells and Stanley symmetric functions. Comm. Math. Phys., 343(3):1025–1037, 2016.
- Thomas Lam. Totally nonnegative Grassmannian and Grassmann polytopes. pages 51–152, 2016.
- Thomas Lam. An invitation to positive geometries. arXiv:2208.05407, 2022.
- Four lectures on euler integrals. arXiv:2306.13578, 2023.
- Sebastian Mizera. Scattering amplitudes from intersection theory. Phys. Rev. Lett., 120(14):141602, 6, 2018.
- Sebastian Mizera. Aspects of scattering amplitudes and moduli space localization. Springer Theses. Springer, Cham, [2020] ©2020. Doctoral thesis accepted by the University of Waterloo, Canada.
- Ambitwistor strings and the scattering equations. Journal of High Energy Physics, 2014(7):48, 2014.
- Introduction to tropical geometry, volume 161 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2015.
- Mellin transforms of multivariate rational functions. J. Geom. Anal., 23(1):24–46, 2013.
- The number of critical points of a product of powers of linear functions. Invent. Math., 120(1):1–14, 1995.
- Rahul Pandharipande. The canonical class of M¯0,n(ℙr,d)subscript¯𝑀0𝑛superscriptℙ𝑟𝑑\overline{M}_{0,n}(\mathbb{P}^{r},d)over¯ start_ARG italic_M end_ARG start_POSTSUBSCRIPT 0 , italic_n end_POSTSUBSCRIPT ( blackboard_P start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT , italic_d ) and enumerative geometry. Internat. Math. Res. Notices, (4):173–186, 1997.
- Alexander Postnikov. Total positivity, Grassmannians, and networks. 2006.
- Claudio Procesi. Lie groups. Universitext. Springer, New York, 2007. An approach through invariants and representations.
- Maxwell Rosenlicht. Some rationality questions on algebraic groups. Ann. Mat. Pura Appl. (4), 43:25–50, 1957.
- On the tree level S matrix of Yang-Mills theory. Phys. Rev., D70:026009, 2004.
- Pierre Samuel. À propos du théorème des unités. Bull. Sci. Math. (2), 90:89–96, 1966.
- Rob Silversmith. Cross-ratio degrees and triangulations. arXiv:2310.07377, 2023.
- O. Schlotterer and S. Stieberger. Motivic multiple zeta values and superstring amplitudes. J. Phys. A, 46(47):475401, 37, 2013.
- Likelihood equations and scattering amplitudes. Algebr. Stat., 12(2):167–186, 2021.
- The tropical totally positive grassmannian. Journal of Algebraic Combinatorics, 22(2):189–210, 2005.
- The positive Dressian equals the positive tropical Grassmannian. Trans. Amer. Math. Soc. Ser. B, 8:330–353, 2021.
- Jenia Tevelev. Compactifications of subvarieties of tori. Amer. J. Math., 129(4):1087–1104, 2007.
- A. Varchenko. Critical points of the product of powers of linear functions and families of bases of singular vectors. Compositio Math., 97(3):385–401, 1995.
- Gabriele Veneziano. Construction of a crossing-symmetric, Regge-behaved amplitude for linearly rising trajectories. Il Nuovo Cimento A (1965-1970), 57(1):190–197, 1968.
- Edward Witten. Perturbative gauge theory as a string theory in twistor space. Commun. Math. Phys., 252:189–258, 2004.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.