Inherent quantum resources in stationary spin chains (2405.16974v4)
Abstract: The standard way to generate many-body quantum correlations is via a dynamical protocol: an initial product state is transformed by interactions that generate non-classical correlations at later times. Here, we show that many-body Bell correlations are inherently present in the eigenstates of a variety of spin-1/2 chains. In particular, we show that the eigenstates and thermal states of the collective Lipkin-Meshkov-Glick model possess many-body Bell correlations. We demonstrate that the Bell correlations can take on quantized values that change discontinuously with variations in the total magnetization. Finally, we show that these many-body Bell correlations persist even in the presence of both diagonal and off-diagonal disorder.
- A. Einstein, B. Podolsky, and N. Rosen, Can quantum-mechanical description of physical reality be considered complete?, Phys. Rev. 47, 777 (1935).
- E. Schrödinger, Die gegenwärtige Situation in der Quantenmechanik, Naturwissenschaften 23, 807 (1935).
- J. S. Bell, On the einstein podolsky rosen paradox, Physics 1, 195 (1964).
- I. Frérot, M. Fadel, and M. Lewenstein, Probing quantum correlations in many-body systems: a review of scalable methods, Reports on Progress in Physics 86, 114001 (2023).
- A. Tavakoli, Semi-device-independent certification of independent quantum state and measurement devices, Phys. Rev. Lett. 125, 150503 (2020).
- J. Fraxanet, T. Salamon, and M. Lewenstein, The coming decades of quantum simulation (2022).
- H.-Y. Huang, J. Preskill, and M. Soleimanifar, Certifying almost all quantum states with few single-qubit measurements (2024), arXiv:2404.07281 [quant-ph] .
- M. Kliesch and I. Roth, Theory of quantum system certification, PRX Quantum 2, 010201 (2021).
- M. Kitagawa and M. Ueda, Squeezed spin states, Phys. Rev. A 47, 5138 (1993).
- J. K. Korbicz, J. I. Cirac, and M. Lewenstein, Spin squeezing inequalities and entanglement of n𝑛nitalic_n qubit states, Phys. Rev. Lett. 95, 120502 (2005).
- H. Lipkin, N. Meshkov, and A. Glick, Validity of many-body approximation methods for a solvable model: (i). exact solutions and perturbation theory, Nuclear Physics 62, 188 (1965).
- N. Meshkov, A. Glick, and H. Lipkin, Validity of many-body approximation methods for a solvable model: (ii). linearization procedures, Nuclear Physics 62, 199 (1965).
- A. Glick, H. Lipkin, and N. Meshkov, Validity of many-body approximation methods for a solvable model: (iii). diagram summations, Nuclear Physics 62, 211 (1965).
- R. Botet, R. Jullien, and P. Pfeuty, Size scaling for infinitely coordinated systems, Phys. Rev. Lett. 49, 478 (1982).
- S. Lerma-H and J. Dukelsky, The lipkin-meshkov-glick model from the perspective of the su(1,1) richardson-gaudin models, Journal of Physics: Conference Series 492, 012013 (2014).
- R. Botet and R. Jullien, Large-size critical behavior of infinitely coordinated systems, Phys. Rev. B 28, 3955 (1983).
- Y. Huang, T. Li, and Z.-q. Yin, Symmetry-breaking dynamics of the finite-size lipkin-meshkov-glick model near ground state, Phys. Rev. A 97, 012115 (2018a).
- K. Hammam, G. Manzano, and G. De Chiara, Quantum coherence enables hybrid multitask and multisource regimes in autonomous thermal machines, Phys. Rev. Res. 6, 013310 (2024).
- X. He, J. He, and J. Zheng, Thermal entangled quantum heat engine, Physica A: Statistical Mechanics and its Applications 391, 6594 (2012).
- Y.-H. Ma, S.-H. Su, and C.-P. Sun, Quantum thermodynamic cycle with quantum phase transition, Phys. Rev. E 96, 022143 (2017).
- M. Łobejko, P. Mazurek, and M. Horodecki, Thermodynamics of Minimal Coupling Quantum Heat Engines, Quantum 4, 375 (2020).
- S. Çakmak, M. Çandır, and F. Altintas, Construction of a quantum carnot heat engine cycle, Quantum Information Processing 19, 314 (2020).
- E. M. Centamori, M. Campisi, and V. Giovannetti, Spin-chain based quantum thermal machines (2023), arXiv:2303.15574 [quant-ph] .
- M. H. B. Chakour, A. E. Allati, and Y. Hassouni, Entangled quantum refrigerator based on two anisotropic spin-1/2 heisenberg xyz chain with dzyaloshinskii–moriya interaction, The European Physical Journal D 75, 42 (2021).
- L. A. Williamson and M. J. Davis, Many-body enhancement in a spin-chain quantum heat engine, Phys. Rev. B 109, 024310 (2024).
- J. Vidal, G. Palacios, and C. Aslangul, Entanglement dynamics in the lipkin-meshkov-glick model, Phys. Rev. A 70, 062304 (2004).
- R. Orús, S. Dusuel, and J. Vidal, Equivalence of critical scaling laws for many-body entanglement in the lipkin-meshkov-glick model, Phys. Rev. Lett. 101, 025701 (2008).
- A. Sen(De) and U. Sen, Entanglement mean field theory: Lipkin–meshkov–glick model, Quantum Information Processing 11, 675 (2012).
- C. Wang, Y.-Y. Zhang, and Q.-H. Chen, Quantum correlations in collective spin systems, Phys. Rev. A 85, 052112 (2012).
- S. M. Hengstenberg, C. E. P. Robin, and M. J. Savage, Multi-body entanglement and information rearrangement in nuclear many-body systems: a study of the lipkin–meshkov–glick model, The European Physical Journal A 59, 231 (2023).
- and, , and and, Thermal entanglement in lipkin—meshkov—glick model, Communications in Theoretical Physics 56, 61 (2011).
- L. Shao and L. Fu, Spin squeezing generated by the anisotropic central spin model, Phys. Rev. A 109, 052618 (2024).
- G. Chen, J. Q. Liang, and S. Jia, Interaction-induced lipkin-meshkov-glick model in a bose-einstein condensate inside an optical cavity, Opt. Express 17, 19682 (2009).
- J. Larson, Circuit qed scheme for the realization of the lipkin-meshkov-glick model, Europhysics Letters 90, 54001 (2010).
- L.-P. Yang and Z. Jacob, Engineering first-order quantum phase transitions for weak signal detection, Journal of Applied Physics 126, 174502 (2019), https://pubs.aip.org/aip/jap/article-pdf/doi/10.1063/1.5121558/15237507/174502_1_online.pdf .
- S. Morrison and A. S. Parkins, Dynamical quantum phase transitions in the dissipative lipkin-meshkov-glick model with proposed realization in optical cavity qed, Phys. Rev. Lett. 100, 040403 (2008).
- A. L. Grimsmo and A. S. Parkins, Dissipative dicke model with nonlinear atom–photon interaction, Journal of Physics B: Atomic, Molecular and Optical Physics 46, 224012 (2013).
- I. Hobday, P. Stevenson, and J. Benstead, Variance minimisation of the lipkin-meshkov-glick model on a quantum computer (2024), arXiv:2403.08625 [quant-ph] .
- M. Żukowski and Č. Brukner, Bell’s theorem for general n-qubit states, Phys. Rev. Lett. 88, 210401 (2002).
- A. Niezgoda, M. Panfil, and J. Chwedeńczuk, Quantum correlations in spin chains, Phys. Rev. A 102, 042206 (2020).
- A. Niezgoda and J. Chwedeńczuk, Many-body nonlocality as a resource for quantum-enhanced metrology, Phys. Rev. Lett. 126, 210506 (2021).
- J. Chwedenczuk, Many-body Bell inequalities for bosonic qubits, SciPost Phys. Core 5, 025 (2022).
- See [varshalovich1988quantum] for the details on the rotation matrices in the SU(2) group.
- D. A. Hamza and J. Chwedeńczuk, Bell correlations of a thermal fully-connected spin chain in a vicinity of a quantum critical point (2024), arXiv:2403.02383 [quant-ph] .
- O. Katz and C. Monroe, Programmable quantum simulations of bosonic systems with trapped ions, Phys. Rev. Lett. 131, 033604 (2023).
- O. Katz, M. Cetina, and C. Monroe, n𝑛nitalic_n-body interactions between trapped ion qubits via spin-dependent squeezing, Phys. Rev. Lett. 129, 063603 (2022).
- M. Gärttner, P. Hauke, and A. M. Rey, Relating out-of-time-order correlations to entanglement via multiple-quantum coherences, Phys. Rev. Lett. 120, 040402 (2018).
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.