Papers
Topics
Authors
Recent
2000 character limit reached

Anonymization Prompt Learning for Facial Privacy-Preserving Text-to-Image Generation (2405.16895v2)

Published 27 May 2024 in cs.CV

Abstract: Text-to-image diffusion models, such as Stable Diffusion, generate highly realistic images from text descriptions. However, the generation of certain content at such high quality raises concerns. A prominent issue is the accurate depiction of identifiable facial images, which could lead to malicious deepfake generation and privacy violations. In this paper, we propose Anonymization Prompt Learning (APL) to address this problem. Specifically, we train a learnable prompt prefix for text-to-image diffusion models, which forces the model to generate anonymized facial identities, even when prompted to produce images of specific individuals. Extensive quantitative and qualitative experiments demonstrate the successful anonymization performance of APL, which anonymizes any specific individuals without compromising the quality of non-identity-specific image generation. Furthermore, we reveal the plug-and-play property of the learned prompt prefix, enabling its effective application across different pretrained text-to-image models for transferrable privacy and security protection against the risks of deepfakes.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.