Locality, Correlations, Information, and non-Hermitian Quantum Systems (2405.16842v2)
Abstract: Local non-Hermitian (NH) quantum systems generically exhibit breakdown of Lieb-Robinson (LR) bounds, motivating study of whether new locality measures might shed light not seen by existing measures. In this paper we extend the standard connected correlation function (CC) to NH systems in a form that recovers locality. Additionally, we use the metric formalism to derive a modified CC which recovers not just locality but even LR bounds in local $PT$-Symmetric systems, and discuss extensions of both CCs to the $n$-partite case. We show that in Hermitian systems $\delta\rho = \rho-\rho_A\otimes\rho_B$ can be written as a linear combination of CCs, allowing us to place an LR bound on $\Vert\delta\rho\Vert_2$. We show this generically extends to an LR bound on mutual information as well. We then extend this to NH systems, where we show its violations can be used to place a necessary condition on which NH Hamiltonians are capable of nonlocal entanglement generation. Numerical simulations are provided by means of exact diagonalization for the NH Transverse-Field Ising Model, demonstrating both breakdown and recovery of LR bounds.
- S. Gopalakrishnan and M. J. Gullans, Physical Review Letters 126, 170503 (2021).
- Y. Ashida and M. Ueda, Physical Review Letters 120 (2018), 10.1103/physrevlett.120.185301.
- E. H. Lieb and D. W. Robinson, Communications in Mathematical Physics 28, 251 (1972).
- B. Nachtergaele and R. Sims, Communications in Mathematical Physics 265, 119 (2006a).
- D. Poulin, Physical Review Letters 104, 190401 (2010).
- M. B. Hastings and T. Koma, Communications in Mathematical Physics 265, 781 (2006).
- J. Kudler-Flam, L. Nie, and A. Vijay, “Rényi mutual information in quantum field theory, tensor networks, and gravity,” (2023), arXiv:2308.08600 [hep-th] .
- A. Sergi and K. G. Zloshchastiev, Physical Review A 91 (2015), 10.1103/physreva.91.062108.
- A. Mostafazadeh, Journal of Mathematical Physics 43, 205 (2002).
- A. Mostafazadeh, Czechoslovak Journal of Physics 53, 1079–1084 (2003).
- T. A. Brun, American Journal of Physics 70, 719 (2002).
- C. M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998).
- A. Fring and M. H. Y. Moussa, Phys. Rev. A 93, 042114 (2016).
- F. J. Dyson, Phys. Rev. 102, 1230 (1956).
- A. Biella and M. Schiró, Quantum 5, 528 (2021).
- H. Kim and D. A. Huse, Phys. Rev. Lett. 111, 127205 (2013).
- G. S. Sylvester, Communications in Mathematical Physics 42, 209 (1975).
- P. Zanardi, Physical Review A 63 (2001), 10.1103/PhysRevA.63.040304.
- P. Aniello and C. Lupo, Open Systems and Information Dynamics 16, 127–143 (2009).
- B. Nachtergaele and R. Sims, Communications in Mathematical Physics 265, 119–130 (2006b).
- M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, 10th ed. (Cambridge University Press, Cambridge ; New York, 2010).
- M. J. Gullans and D. A. Huse, Phys. Rev. X 10, 041020 (2020).
- K. D. Agarwal, T. K. Konar, L. G. C. Lakkaraju, and A. S. De, “Recognizing critical lines via entanglement in non-hermitian systems,” (2023), arXiv:2305.08374 [quant-ph] .
- K. B. Efetov, Physical Review Letters 79, 491 (1997).
- J. T. Chalker and Z. J. Wang, Physical Review Letters 79, 1797 (1997).
- Y. V. Fyodorov and H.-J. Sommers, Journal of Physics A: Mathematical and General 36, 3303 (2003).
- J. Preskill, “Quantum computing and the entanglement frontier,” (2012).
- N. Anand and P. Zanardi, Quantum 6, 746 (2022).
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.