Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 194 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Graphon Particle Systems, Part I: Spatio-Temporal Approximation and Law of Large Numbers (2405.16760v3)

Published 27 May 2024 in eess.SY, cs.SY, and math.PR

Abstract: We study a class of graphon particle systems with time-varying random coefficients. In a graphon particle system, the interactions among particles are characterized by the coupled mean field terms through an underlying graphon and the randomness of the coefficients comes from the stochastic processes associated with the particle labels. By constructing two-level approximated sequences converging in 2-Wasserstein distance, we prove the existence and uniqueness of the solution to the system. Besides, by constructing two-level approximated functions converging to the graphon mean field terms, we establish the law of large numbers, which reveals that if the number of particles tends to infinity and the discretization step tends to zero, then the discrete-time interacting particle system over a large-scale network converges to the graphon particle system. As a byproduct, we discover that the graphon particle system can describe the limiting dynamics of the distributed stochastic gradient descent algorithm over the large-scale network and prove that if the gradients of the local cost functions are Lipschitz continuous, then the graphon particle system can be regarded as the spatio-temporal approximation of the discrete-time distributed stochastic gradient descent algorithm as the number of network nodes tends to infinity and the algorithm step size tends to zero.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.